Machine learning-based classification of arterial spectral waveforms for the diagnosis of peripheral artery disease in the context of diabetes: A proof-of-concept study

医学 波形 支持向量机 模式识别(心理学) 背景(考古学) 小波 动脉疾病 多普勒效应 逻辑回归 人工智能 超声波 接收机工作特性 放射科 计算机科学 血管疾病 外科 内科学 电信 古生物学 雷达 物理 天文 生物
作者
Pasha Normahani,Viknesh Sounderajah,Danilo P. Mandic,Usman Jaffer
出处
期刊:Vascular Medicine [SAGE]
卷期号:27 (5): 450-456 被引量:4
标识
DOI:10.1177/1358863x221105113
摘要

Point-of-care duplex ultrasound has emerged as a promising test for the diagnosis of peripheral artery disease (PAD). However, the interpretation of morphologically diverse Doppler arterial spectral waveforms is challenging and associated with wide inter-observer variation. The aim of this study is to evaluate the utility of machine learning techniques for the diagnosis of PAD from Doppler arterial spectral waveforms sampled at the level of the ankle in patients with diabetes.In two centres, 590 Doppler arterial spectral waveform images (PAD 369, no-PAD 221) from 305 patients were prospectively collected. Doppler arterial spectral waveform signals were reconstructed. Blinded full lower-limb reference duplex ultrasound results were used to label waveform according to PAD status (i.e., PAD, no-PAD). Statistical metrics and multiscale wavelet variance were extracted as discriminatory features. A long short-term memory (LSTM) network was used for the classification of raw signals, and logistic regression (LR) and support vector machines (SVM) were used for classification of extracted features. Signals and feature vectors were randomly divided into training (80%) and testing (20%) sets.The highest overall accuracy was achieved using a logistic regression model with a combination of statistical and multiscale wavelet variance features, with 88% accuracy, 92% sensitivity, and 82% specificity. The area under the receiver operating characteristics curve (AUC) was 0.93.We have constructed a machine learning algorithm with high discriminatory ability for the diagnosis of PAD using Doppler arterial spectral waveforms sampled at the ankle vessels.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘤嘤怪完成签到,获得积分10
刚刚
1秒前
ypeng完成签到,获得积分10
1秒前
1秒前
iourcc完成签到,获得积分20
2秒前
秦磊发布了新的文献求助10
2秒前
yyq关注了科研通微信公众号
4秒前
4秒前
跳跃仙人掌应助健壮凡桃采纳,获得10
5秒前
poly哆啦A梦完成签到,获得积分10
5秒前
EMMA完成签到,获得积分20
6秒前
匹诺曹发布了新的文献求助10
7秒前
7秒前
8秒前
俭朴三问完成签到 ,获得积分10
8秒前
8秒前
过客发布了新的文献求助10
9秒前
9秒前
9秒前
shuya完成签到,获得积分10
10秒前
小二郎应助syx采纳,获得10
11秒前
我是老大应助呜啦啦啦采纳,获得10
12秒前
聪明的青寒完成签到 ,获得积分10
12秒前
Emma发布了新的文献求助10
12秒前
13秒前
13秒前
王大伟发布了新的文献求助10
14秒前
14秒前
研友_Zeg3VL完成签到,获得积分10
15秒前
15秒前
15秒前
科研通AI2S应助xiao采纳,获得10
15秒前
coldspringhao完成签到,获得积分10
16秒前
思源应助MYLK采纳,获得10
16秒前
王耀发布了新的文献求助10
16秒前
nanno发布了新的文献求助30
17秒前
17秒前
Nnn完成签到,获得积分10
17秒前
18秒前
招风鼠发布了新的文献求助20
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3410794
求助须知:如何正确求助?哪些是违规求助? 3014348
关于积分的说明 8862922
捐赠科研通 2701746
什么是DOI,文献DOI怎么找? 1481239
科研通“疑难数据库(出版商)”最低求助积分说明 684750
邀请新用户注册赠送积分活动 679247