Study on grading of Xiaoqu Baijiu based on in-situ untargeted detection of electrochemical measurements

分级(工程) 化学 色谱法 食品科学 模式识别(心理学) 数学 人工智能 计算机科学 工程类 土木工程
作者
Yu Huang,Ming Luo,Wei Wang,Hong Yu Cen,Yun Qun Xie
出处
期刊:International Journal of Food Properties [Informa]
卷期号:25 (1): 885-893 被引量:2
标识
DOI:10.1080/10942912.2022.2066123
摘要

Traditionally, the quality grading of distilled Chinese Baijiu is achieved by artificial sensory evaluation along with gas chromatography. The subjective problems, such as poor timeliness and accuracy of grading, become the bottleneck of industry to improve product quality and efficiency. Actually, the quality of Xiaoqu Baijiu is determined by the synergistic effect of all flavoring substances rather than the specific targeted molecules in Baijiu. In this study, the electrochemical measurements were used to characterize the synergistic effect of flavoring substances in-situ, which also served as an untargeted detection for grading of Baijiu. After the abundant characteristic signals of standard samples whose grades have been confirmed via many winetasters were collected, the corresponding relationship between Baijiu grades and electrochemistry signal was received by the index of multi-parameters. Then, the electrochemical recognition model of Baijiu grades was established via mathematical statistics from above characteristic signals of standard samples. Once the testing data of unknow Baijiu were imported to the recognition model, the Baijiu grade value can be obtained quickly and online from the contrast algorithm, and the average accuracy rate of is more than 80%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助wenjian采纳,获得10
1秒前
1秒前
奇拉维特完成签到 ,获得积分10
1秒前
2秒前
Apple发布了新的文献求助10
2秒前
wtg完成签到,获得积分10
2秒前
在水一方应助Sheila采纳,获得10
3秒前
英姑应助YE采纳,获得30
3秒前
ysl发布了新的文献求助30
3秒前
3秒前
cilan完成签到 ,获得积分10
6秒前
义气的妙松完成签到,获得积分10
6秒前
yangjing发布了新的文献求助10
7秒前
rosexu发布了新的文献求助10
7秒前
盘尼西林发布了新的文献求助10
8秒前
科研通AI2S应助我是125采纳,获得10
8秒前
李健的小迷弟应助arkamar采纳,获得10
9秒前
Xiaoxiao完成签到,获得积分10
9秒前
cilan发布了新的文献求助10
9秒前
SciGPT应助William鉴哲采纳,获得10
9秒前
10秒前
咩咩完成签到,获得积分20
11秒前
合一海盗应助wtg采纳,获得200
11秒前
11秒前
Grayball应助ccc采纳,获得10
11秒前
bkagyin应助猪猪hero采纳,获得10
12秒前
12秒前
科研通AI5应助顺利毕业采纳,获得10
13秒前
领导范儿应助spray采纳,获得30
13秒前
13秒前
长风完成签到,获得积分10
14秒前
15秒前
吴岳发布了新的文献求助10
15秒前
科研通AI2S应助我是125采纳,获得10
16秒前
涛涛完成签到,获得积分10
16秒前
轩辕德地发布了新的文献求助10
17秒前
科研通AI2S应助jidou1011采纳,获得10
17秒前
魔幻的妖丽完成签到 ,获得积分10
18秒前
黄晓杰2024完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808