清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Detection of White Blood Cell Cancer using Deep Learning using Cmyk-Moment Localisation for Information Retrieval

人工智能 分类 深度学习 鉴定(生物学) 癌症 计算机科学 医学 机器学习 白细胞 相关性(法律) 模式识别(心理学) 免疫学 内科学 生物 植物 政治学 法学
作者
M. Muthumanjula,Ramasubramanian Bhoopalan
标识
DOI:10.36548/jismac.2022.1.006
摘要

Medical diagnosis, notably concerning tumors, has been transformed by artificial intelligence as well as deep neural network. White blood cell identification, in particular, necessitates effective diagnosis and therapy. White Blood Cell Cancer (WBCC) comes in a variety of forms. Acute Leukemia Lymphocytes (ALL), Acute Myeloma Lymphocytes (AML), Chronic Leukemia Lymphocytes (CLL), and Chronic Myeloma Lymphocytes (CML) are white blood cell cancers for which detection is time-consuming procedure, vulnerable to sentient as well as equipment blunders. Despite just a comprehensive review with a competent examiner, it can be hard to render a precise conclusive determination in some cases. Conversely, Computer-Aided Diagnosis (CAD) may assist in lessening the number of inaccuracies as well as duration spent in diagnosing WBCC. Though deep learning is widely regarded as the most advanced method for detecting WBCCs, the richness of the retrieved attributes employed in developing the pixel-wise categorization algorithms has a substantial relationship with the efficiency of WBCC identification. The investigation of the various phases of alterations related with WBC concentrations and characteristics is crucial to CAD. Leveraging image handling plus deep learning technologies, a novel fusion characteristic retrieval technique has been created in this research. The suggested approach is divided into two parts: 1) The CMYK-moment localization approach is applied to define the Region of Interest (ROI) and 2) A CNN dependent characteristic blend strategy is utilized to obtain deep learning characteristics. The relevance of the retrieved characteristics is assessed via a variety of categorization techniques. The suggested component collection approach versus different attributes retrieval techniques is tested with an exogenous resource. With all the predictors, the suggested methodology exhibits good effectiveness, adaptability, including consistency, exhibiting aggregate categorization accuracies of 97.57 percent and 96.41 percent, correspondingly, utilizing the main as well as auxiliary samples. This approach has provided a novel option for enhancing CLL identification that may result towards a more accurate identification of malignancies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
Dopamine发布了新的文献求助10
30秒前
1分钟前
天涯眷客完成签到,获得积分10
1分钟前
kk发布了新的文献求助10
1分钟前
SciGPT应助天涯眷客采纳,获得10
1分钟前
榴莲完成签到,获得积分10
1分钟前
lalala发布了新的文献求助10
1分钟前
lalala发布了新的文献求助200
2分钟前
hua完成签到 ,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
2分钟前
David发布了新的文献求助10
2分钟前
3分钟前
lourahan发布了新的文献求助10
3分钟前
3分钟前
3分钟前
儒雅的夏翠完成签到,获得积分10
4分钟前
SolderOH完成签到,获得积分10
4分钟前
lalala发布了新的文献求助10
4分钟前
5分钟前
Sandy发布了新的文献求助10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
ling361完成签到,获得积分10
6分钟前
洗月完成签到,获得积分10
7分钟前
科研通AI2S应助枯藤老柳树采纳,获得10
7分钟前
7分钟前
Andy完成签到,获得积分10
7分钟前
碧蓝的尔竹完成签到,获得积分10
7分钟前
科研通AI2S应助枯藤老柳树采纳,获得10
7分钟前
经钧完成签到 ,获得积分10
7分钟前
jyy发布了新的文献求助50
7分钟前
枯藤老柳树完成签到,获得积分10
8分钟前
GPY完成签到,获得积分10
9分钟前
xiaofu完成签到,获得积分10
10分钟前
imi完成签到 ,获得积分10
10分钟前
hongt05完成签到 ,获得积分10
11分钟前
可爱的函函应助穆振家采纳,获得10
11分钟前
11分钟前
穆振家发布了新的文献求助10
11分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
肝病学名词 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171584
求助须知:如何正确求助?哪些是违规求助? 2822463
关于积分的说明 7939252
捐赠科研通 2483077
什么是DOI,文献DOI怎么找? 1322962
科研通“疑难数据库(出版商)”最低求助积分说明 633826
版权声明 602647