亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning for Alzheimer's disease diagnosis: A survey

计算机科学 深度学习 模式 人工智能 数据科学 神经影像学 机器学习 疾病 图形 认知 生成语法 神经科学 医学 心理学 病理 社会学 理论计算机科学 社会科学
作者
M. Khojaste-Sarakhsi,Seyedhamidreza Shahabi Haghighi,S.M.T. Fatemi Ghomi,Elena Marchiori
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:130: 102332-102332 被引量:121
标识
DOI:10.1016/j.artmed.2022.102332
摘要

Alzheimer's Disease (AD) is an irreversible neurodegenerative disease that results in a progressive decline in cognitive abilities. Since AD starts several years before the onset of the symptoms, its early detection is challenging due to subtle changes in biomarkers mainly detectable in different neuroimaging modalities. Developing computer-aided diagnostic models based on deep learning can provide excellent opportunities for the analysis of different neuroimage modalities along with other non-image biomarkers. In this survey, we perform a comparative analysis of about 100 published papers since 2019 that employ basic deep architectures such as CNN, RNN, and generative models for AD diagnosis. Moreover, about 60 papers that have applied a trending topic or architecture for AD are investigated. Explainable models, normalizing flows, graph-based deep architectures, self-supervised learning, and attention mechanisms are considered. The main challenges in this body of literature have been categorized and explained from data-related, methodology-related, and clinical adoption aspects. We conclude our paper by addressing some future perspectives and providing recommendations to conduct further studies for AD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助111采纳,获得10
5秒前
6秒前
爱听歌凤灵完成签到,获得积分10
8秒前
今日发布了新的文献求助10
11秒前
Lucas应助七色光采纳,获得10
35秒前
充电宝应助彭蓬采纳,获得10
37秒前
Splaink完成签到 ,获得积分10
39秒前
41秒前
44秒前
科研通AI5应助花骨头采纳,获得10
47秒前
今日完成签到,获得积分10
49秒前
蕊蕊应助奥黛丽悟空采纳,获得10
56秒前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
Owen应助xuan采纳,获得30
1分钟前
七色光发布了新的文献求助10
1分钟前
科研通AI5应助杭州007采纳,获得30
1分钟前
1分钟前
科研通AI5应助111采纳,获得10
1分钟前
杭州007完成签到,获得积分10
1分钟前
volcano发布了新的文献求助10
1分钟前
九月亦星完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xuan发布了新的文献求助30
1分钟前
杭州007发布了新的文献求助30
1分钟前
1分钟前
1分钟前
完美世界应助展锋采纳,获得10
1分钟前
蟹治猿完成签到 ,获得积分10
1分钟前
月满西楼完成签到,获得积分10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
如意冥茗完成签到 ,获得积分10
2分钟前
IShowSpeed完成签到,获得积分10
2分钟前
2分钟前
展锋发布了新的文献求助10
3分钟前
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220743
求助须知:如何正确求助?哪些是违规求助? 4394021
关于积分的说明 13680050
捐赠科研通 4256994
什么是DOI,文献DOI怎么找? 2335881
邀请新用户注册赠送积分活动 1333500
关于科研通互助平台的介绍 1287918