已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning models to detect social distress, spiritual pain, and severe physical psychological symptoms in terminally ill patients with cancer from unstructured text data in electronic medical records

病历 医学 召回 苦恼 接收机工作特性 焦虑 精神科 临床心理学 心理学 内科学 认知心理学
作者
Kento Masukawa,Maho Aoyama,Shinichiroh Yokota,Jyunya Nakamura,Ryoka Ishida,Masaaki Nakayama,Mitsunori Miyashita
出处
期刊:Palliative Medicine [SAGE Publishing]
卷期号:36 (8): 1207-1216 被引量:24
标识
DOI:10.1177/02692163221105595
摘要

Few studies have developed automatic systems for identifying social distress, spiritual pain, and severe physical and phycological symptoms from text data in electronic medical records.To develop models to detect social distress, spiritual pain, and severe physical and psychological symptoms in terminally ill patients with cancer from unstructured text data contained in electronic medical records.A retrospective study of 1,554,736 narrative clinical records was analyzed 1 month before patients died. Supervised machine learning models were trained to detect comprehensive symptoms, and the performance of the models was tested using the area under the receiver operating characteristic curve (AUROC) and precision recall curve (AUPRC).A total of 808 patients was included in the study using records obtained from a university hospital in Japan between January 1, 2018 and December 31, 2019. As training data, we used medical records labeled for detecting social distress (n = 10,000) and spiritual pain (n = 10,000), and records that could be combined with the Support Team Assessment Schedule (based on date) for detecting severe physical/psychological symptoms (n = 5409).Machine learning models for detecting social distress had AUROC and AUPRC values of 0.98 and 0.61, respectively; values for spiritual pain, were 0.90 and 0.58, respectively. The machine learning models accurately identified severe symptoms (pain, dyspnea, nausea, insomnia, and anxiety) with a high level of discrimination (AUROC > 0.8).The machine learning models could detect social distress, spiritual pain, and severe symptoms in terminally ill patients with cancer from text data contained in electronic medical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不甜完成签到,获得积分10
3秒前
4秒前
安等暖阳完成签到 ,获得积分10
7秒前
8秒前
Ansels完成签到,获得积分10
10秒前
wanci应助科研进化中采纳,获得10
12秒前
小人物的坚持完成签到 ,获得积分10
13秒前
13秒前
852应助友好的储采纳,获得10
15秒前
21秒前
ASH完成签到 ,获得积分10
25秒前
Hello应助友好的储采纳,获得10
26秒前
xnz发布了新的文献求助10
36秒前
田様应助友好的储采纳,获得10
40秒前
qiandi完成签到,获得积分10
40秒前
何东浩完成签到,获得积分10
41秒前
饱满豌豆完成签到 ,获得积分10
43秒前
科目三应助hua采纳,获得10
44秒前
Akim应助llll采纳,获得10
45秒前
Spark完成签到,获得积分10
53秒前
123完成签到 ,获得积分20
54秒前
57秒前
llll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
朱文韬发布了新的文献求助10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
乐乐应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
Magali应助科研通管家采纳,获得30
1分钟前
五條小羊完成签到 ,获得积分10
1分钟前
星星完成签到 ,获得积分10
1分钟前
友好的储发布了新的文献求助10
1分钟前
clm完成签到 ,获得积分10
1分钟前
朱文韬完成签到,获得积分10
1分钟前
1分钟前
科研通AI5应助slb1319采纳,获得10
1分钟前
天天快乐应助锦七采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965451
求助须知:如何正确求助?哪些是违规求助? 3510745
关于积分的说明 11154993
捐赠科研通 3245194
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874088
科研通“疑难数据库(出版商)”最低求助积分说明 804168