Machine learning models to detect social distress, spiritual pain, and severe physical psychological symptoms in terminally ill patients with cancer from unstructured text data in electronic medical records

病历 医学 召回 苦恼 接收机工作特性 焦虑 精神科 临床心理学 心理学 内科学 认知心理学
作者
Kento Masukawa,Maho Aoyama,Shinichiroh Yokota,Jyunya Nakamura,Ryoka Ishida,Masaaki Nakayama,Mitsunori Miyashita
出处
期刊:Palliative Medicine [SAGE]
卷期号:36 (8): 1207-1216 被引量:22
标识
DOI:10.1177/02692163221105595
摘要

Few studies have developed automatic systems for identifying social distress, spiritual pain, and severe physical and phycological symptoms from text data in electronic medical records.To develop models to detect social distress, spiritual pain, and severe physical and psychological symptoms in terminally ill patients with cancer from unstructured text data contained in electronic medical records.A retrospective study of 1,554,736 narrative clinical records was analyzed 1 month before patients died. Supervised machine learning models were trained to detect comprehensive symptoms, and the performance of the models was tested using the area under the receiver operating characteristic curve (AUROC) and precision recall curve (AUPRC).A total of 808 patients was included in the study using records obtained from a university hospital in Japan between January 1, 2018 and December 31, 2019. As training data, we used medical records labeled for detecting social distress (n = 10,000) and spiritual pain (n = 10,000), and records that could be combined with the Support Team Assessment Schedule (based on date) for detecting severe physical/psychological symptoms (n = 5409).Machine learning models for detecting social distress had AUROC and AUPRC values of 0.98 and 0.61, respectively; values for spiritual pain, were 0.90 and 0.58, respectively. The machine learning models accurately identified severe symptoms (pain, dyspnea, nausea, insomnia, and anxiety) with a high level of discrimination (AUROC > 0.8).The machine learning models could detect social distress, spiritual pain, and severe symptoms in terminally ill patients with cancer from text data contained in electronic medical records.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欣喜书桃完成签到,获得积分10
1秒前
1秒前
陈木木完成签到,获得积分10
1秒前
刘旭阳发布了新的文献求助10
1秒前
1秒前
hhhhhhh发布了新的文献求助10
1秒前
长情洙完成签到,获得积分10
2秒前
Lilac完成签到 ,获得积分10
2秒前
2秒前
2秒前
MissXia完成签到,获得积分10
2秒前
NUNKI完成签到,获得积分10
2秒前
迅速星星完成签到,获得积分10
2秒前
科研废物发布了新的文献求助10
3秒前
ltc完成签到,获得积分10
3秒前
科研通AI5应助诚c采纳,获得10
3秒前
Mrrr发布了新的文献求助10
3秒前
sganthem完成签到,获得积分10
3秒前
4秒前
哦吼完成签到,获得积分10
4秒前
4秒前
lm发布了新的文献求助10
5秒前
月白发布了新的文献求助10
5秒前
π.完成签到,获得积分10
6秒前
6秒前
李健应助长情洙采纳,获得10
6秒前
6秒前
科研小白完成签到,获得积分10
7秒前
7秒前
RandyD发布了新的文献求助10
7秒前
7秒前
最最最发布了新的文献求助10
7秒前
8秒前
π.发布了新的文献求助10
8秒前
9秒前
yangyangyang发布了新的文献求助10
9秒前
siccy完成签到 ,获得积分10
9秒前
图南关注了科研通微信公众号
10秒前
我是老大应助Mrrr采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759