🔥 科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。详情 📚 中科院2025期刊分区📊 已更新
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting patient response to cancer therapy via histopathology images.

组织病理学 乳腺癌 肺癌 医学 癌症 相关性 卷积神经网络 病理 人工智能 内科学 计算机科学 几何学 数学
作者
Danh-Tai Hoang,Doreen S. Ben-Zvi,Leandro C. Hermida,Gal Dinstag,Efrat Elis,Sanju Sinha,Neelam Sinha,Ranit Aharonov,Tuvik Beker,Eric A. Stone,Eytan Ruppin
出处
期刊:Journal of Clinical Oncology [American Society of Clinical Oncology]
卷期号:40 (16_suppl): e13561-e13561 被引量:1
标识
DOI:10.1200/jco.2022.40.16_suppl.e13561
摘要

e13561 Background: Histopathology has long been considered the gold standard of clinical diagnosis and prognosis in cancer. In recent years, molecular markers including tumor gene expression have proven increasingly valuable for enhancing diagnosis and precision oncology. Here we ask if we can predict tumor gene expression from its histopathology images and based on the latter, predict patient survival and treatment response. Methods: We developed DeepPT (Deep Pathology for Treatment), a deep learning framework that predicts gene expression directly from histopathology tumor images. DeepPT is composed of three main components: a pre-trained convolutional neural network model for feature extraction, an auto-encoder for feature compression, and a multiple-layer perceptron for regression. This architecture enables the model to capitalize on the similarity among the gene expressions and benefit from the advantages of multitask learning. Results: DeepPT was trained with haematoxylin and eosin stained (H&E) tumor slides from lung and breast cancer patients and their corresponding gene expression profiles. The models were then used to predict gene expression from five different held-out datasets, using nested cross validation. A total of approximately 23,000 genes were considered in this study; out of these, over 99% had a positive correlation between predicted and actual values, commonly for lung and breast cancer. Furthermore, a record number of genes (2,541 and 1,197 genes for lung and breast cancer, respectively) had a correlation above 0.4, well over the results of the current state-of-the-art approach (1,550 and 786 genes, respectively). We next studied if the inferred gene expression could be used for H&E-based personalized medicine. To this end, we used the predicted tumor transcriptomics generated by DeepPT as input to ENLIGHT, a platform that predicts a patient’s response to treatment from their tumor transcriptomics. We found that ENLIGHT matching scores based on DeepPT outputs were indeed associated with response to treatment. Conclusions: DeepPT is the first computational approach for building response predictors that can infer therapy response directly from whole slide images of patient biopsies. Importantly, its future application promises to make precision oncology more accessible to physicians and patients in the developing world.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
7秒前
10秒前
窦香菱发布了新的文献求助10
11秒前
gxh发布了新的文献求助10
13秒前
20秒前
深情素阴发布了新的文献求助10
25秒前
28秒前
123321完成签到 ,获得积分10
29秒前
hwen1998完成签到 ,获得积分10
37秒前
朴素的山蝶完成签到 ,获得积分10
41秒前
自信号厂完成签到 ,获得积分10
44秒前
blenx完成签到,获得积分10
48秒前
情怀应助金润采纳,获得10
49秒前
科研通AI5应助hwen1998采纳,获得10
49秒前
55秒前
金润发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
郭嘉彬完成签到,获得积分10
1分钟前
lalala发布了新的文献求助10
1分钟前
金润完成签到,获得积分10
1分钟前
郭嘉彬发布了新的文献求助10
1分钟前
浦肯野举报Lin求助涉嫌违规
1分钟前
Orange应助无心的沉鱼采纳,获得30
1分钟前
1分钟前
MchemG完成签到,获得积分0
1分钟前
hwen1998发布了新的文献求助10
1分钟前
gxh关闭了gxh文献求助
1分钟前
John完成签到,获得积分10
2分钟前
2分钟前
大个应助壮观冰岚采纳,获得10
2分钟前
2分钟前
壮观冰岚完成签到,获得积分10
2分钟前
2分钟前
壮观冰岚发布了新的文献求助10
2分钟前
搜集达人应助lalala采纳,获得10
2分钟前
完美世界应助LH采纳,获得10
3分钟前
QQ完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
British Girl Chinese Wife (New World Press, 1985) 800
中国文摘CHINA DIGEST(1946-1950) 1-3(英文) 精装 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 化学工程 复合材料 基因 遗传学 催化作用 物理化学 细胞生物学 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3607334
求助须知:如何正确求助?哪些是违规求助? 3176003
关于积分的说明 9585195
捐赠科研通 2882109
什么是DOI,文献DOI怎么找? 1582963
邀请新用户注册赠送积分活动 744275
科研通“疑难数据库(出版商)”最低求助积分说明 726741