kmer2vec: A Novel Method for Comparing DNA Sequences by word2vec Embedding

文字2vec 系统发育树 基因组 计算机科学 k-mer公司 计算生物学 序列(生物学) 多序列比对 树(集合论) 序列比对 基因组学 自由序列分析 聚类分析 嵌入 人工智能 理论计算机科学 数据挖掘 生物 数学 遗传学 组合数学 基因 肽序列
作者
Ruohan Ren,Changchuan Yin,Stephen S.‐T. Yau
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:29 (9): 1001-1021 被引量:17
标识
DOI:10.1089/cmb.2021.0536
摘要

The comparison of DNA sequences is of great significance in genomics analysis. Although the traditional multiple sequence alignment (MSA) method is popularly used for evolutionary analysis, optimally aligning k sequences becomes computationally intractable when k increases due to the intrinsic computational complexity of MSA. Despite numerous k-mer alignment-free methods being proposed, the existing k-mer alignment-free methods may not truly capture the contextual structures of the sequences. In this study, we present a novel k-mer contextual alignment-free method (called kmer2vec), in which the sequence k-mers are semantically embedded to word2vec vectors, an essential technique in natural language processing. Consequently, the method converts each DNA/RNA sequence into a point in the word2vec high-dimensional space and compares DNA sequences in the space. Because the word2vec vectors are trained from the contextual relationship of k-mers in the genomes, the method may extract valuable structural information from the sequences and reflect the relationship among them properly. The proposed method is optimized on the parameters from word2vec training and verified in the phylogenetic analysis of large whole genomes, including coronavirus and bacterial genomes. The results demonstrate the effectiveness of the method on phylogenetic tree construction and species clustering. The method running speed is much faster than that of the MSA method, especially the phylogenetic relationships constructed by the kmer2vec method are more accurate than the conventional k-mer alignment-free method. Therefore, this approach can provide new perspectives for phylogeny and evolution and make it possible to analyze large genomes. In addition, we discuss special parameterization in the k-mer word2vec embedding construction. An effective tool for rapid SARS-CoV-2 typing can also be derived when combining kmer2vec with clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助森气采纳,获得10
刚刚
1秒前
1秒前
potato完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助久久采纳,获得10
2秒前
乖乖完成签到,获得积分10
3秒前
3秒前
zhz发布了新的文献求助10
3秒前
4秒前
灰灰完成签到,获得积分10
4秒前
科目三应助chao采纳,获得30
4秒前
斑驳的落叶完成签到,获得积分20
4秒前
5秒前
5秒前
Rickpinkman发布了新的文献求助10
5秒前
星逝发布了新的文献求助10
5秒前
6秒前
纠纠发布了新的文献求助10
7秒前
明亮沛珊应助胡医生采纳,获得10
7秒前
道阻且长发布了新的文献求助10
7秒前
7秒前
怕黑筝完成签到,获得积分10
8秒前
9秒前
pan完成签到,获得积分10
9秒前
ccy应助芷琪采纳,获得10
9秒前
在水一方应助和谐蛋蛋采纳,获得10
9秒前
打打应助二六采纳,获得10
9秒前
10秒前
养个小猪咪完成签到,获得积分20
10秒前
小李完成签到 ,获得积分10
11秒前
李君然完成签到,获得积分10
11秒前
森气发布了新的文献求助10
11秒前
jiojio发布了新的文献求助10
11秒前
11秒前
11秒前
王小明发布了新的文献求助10
13秒前
Anna发布了新的文献求助30
13秒前
周安宁完成签到 ,获得积分10
13秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221700
求助须知:如何正确求助?哪些是违规求助? 2870410
关于积分的说明 8170405
捐赠科研通 2537357
什么是DOI,文献DOI怎么找? 1369382
科研通“疑难数据库(出版商)”最低求助积分说明 645496
邀请新用户注册赠送积分活动 619179