kmer2vec: A Novel Method for Comparing DNA Sequences by word2vec Embedding

文字2vec 系统发育树 基因组 计算机科学 k-mer公司 计算生物学 序列(生物学) 多序列比对 树(集合论) 序列比对 基因组学 自由序列分析 聚类分析 嵌入 人工智能 理论计算机科学 数据挖掘 生物 数学 遗传学 组合数学 基因 肽序列
作者
Ruohan Ren,Changchuan Yin,Stephen S.‐T. Yau
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:29 (9): 1001-1021 被引量:17
标识
DOI:10.1089/cmb.2021.0536
摘要

The comparison of DNA sequences is of great significance in genomics analysis. Although the traditional multiple sequence alignment (MSA) method is popularly used for evolutionary analysis, optimally aligning k sequences becomes computationally intractable when k increases due to the intrinsic computational complexity of MSA. Despite numerous k-mer alignment-free methods being proposed, the existing k-mer alignment-free methods may not truly capture the contextual structures of the sequences. In this study, we present a novel k-mer contextual alignment-free method (called kmer2vec), in which the sequence k-mers are semantically embedded to word2vec vectors, an essential technique in natural language processing. Consequently, the method converts each DNA/RNA sequence into a point in the word2vec high-dimensional space and compares DNA sequences in the space. Because the word2vec vectors are trained from the contextual relationship of k-mers in the genomes, the method may extract valuable structural information from the sequences and reflect the relationship among them properly. The proposed method is optimized on the parameters from word2vec training and verified in the phylogenetic analysis of large whole genomes, including coronavirus and bacterial genomes. The results demonstrate the effectiveness of the method on phylogenetic tree construction and species clustering. The method running speed is much faster than that of the MSA method, especially the phylogenetic relationships constructed by the kmer2vec method are more accurate than the conventional k-mer alignment-free method. Therefore, this approach can provide new perspectives for phylogeny and evolution and make it possible to analyze large genomes. In addition, we discuss special parameterization in the k-mer word2vec embedding construction. An effective tool for rapid SARS-CoV-2 typing can also be derived when combining kmer2vec with clustering methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
昔年若许完成签到,获得积分10
2秒前
3秒前
王俊博完成签到,获得积分10
5秒前
橘子完成签到,获得积分10
5秒前
8秒前
贪玩树叶完成签到,获得积分10
8秒前
柳柳完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
呆萌的剑成完成签到 ,获得积分10
11秒前
标致凝莲完成签到 ,获得积分10
12秒前
regr发布了新的文献求助10
13秒前
橘子发布了新的文献求助10
14秒前
14秒前
必过六级发布了新的文献求助10
14秒前
15秒前
潇洒的语蝶完成签到 ,获得积分10
15秒前
云1完成签到,获得积分10
15秒前
15秒前
自信蜗牛完成签到,获得积分20
16秒前
zmr123发布了新的文献求助10
16秒前
及尔发布了新的文献求助10
16秒前
bailu完成签到,获得积分20
18秒前
LLP发布了新的文献求助10
18秒前
黄秋枫完成签到,获得积分10
19秒前
思源应助努力科研采纳,获得30
20秒前
英姑应助科研通管家采纳,获得10
20秒前
汉堡包应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
21秒前
21秒前
NMR完成签到,获得积分10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600851
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843458
捐赠科研通 4678360
什么是DOI,文献DOI怎么找? 2539004
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241