kmer2vec: A Novel Method for Comparing DNA Sequences by word2vec Embedding

文字2vec 系统发育树 基因组 计算机科学 k-mer公司 计算生物学 序列(生物学) 多序列比对 树(集合论) 序列比对 基因组学 自由序列分析 聚类分析 嵌入 人工智能 理论计算机科学 数据挖掘 生物 数学 遗传学 组合数学 基因 肽序列
作者
Ruohan Ren,Changchuan Yin,Stephen S.‐T. Yau
出处
期刊:Journal of Computational Biology [Mary Ann Liebert]
卷期号:29 (9): 1001-1021 被引量:17
标识
DOI:10.1089/cmb.2021.0536
摘要

The comparison of DNA sequences is of great significance in genomics analysis. Although the traditional multiple sequence alignment (MSA) method is popularly used for evolutionary analysis, optimally aligning k sequences becomes computationally intractable when k increases due to the intrinsic computational complexity of MSA. Despite numerous k-mer alignment-free methods being proposed, the existing k-mer alignment-free methods may not truly capture the contextual structures of the sequences. In this study, we present a novel k-mer contextual alignment-free method (called kmer2vec), in which the sequence k-mers are semantically embedded to word2vec vectors, an essential technique in natural language processing. Consequently, the method converts each DNA/RNA sequence into a point in the word2vec high-dimensional space and compares DNA sequences in the space. Because the word2vec vectors are trained from the contextual relationship of k-mers in the genomes, the method may extract valuable structural information from the sequences and reflect the relationship among them properly. The proposed method is optimized on the parameters from word2vec training and verified in the phylogenetic analysis of large whole genomes, including coronavirus and bacterial genomes. The results demonstrate the effectiveness of the method on phylogenetic tree construction and species clustering. The method running speed is much faster than that of the MSA method, especially the phylogenetic relationships constructed by the kmer2vec method are more accurate than the conventional k-mer alignment-free method. Therefore, this approach can provide new perspectives for phylogeny and evolution and make it possible to analyze large genomes. In addition, we discuss special parameterization in the k-mer word2vec embedding construction. An effective tool for rapid SARS-CoV-2 typing can also be derived when combining kmer2vec with clustering methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2go完成签到,获得积分10
刚刚
派大星完成签到,获得积分10
刚刚
娜行发布了新的文献求助10
刚刚
1秒前
小巧的如冬完成签到,获得积分10
1秒前
lxh完成签到,获得积分10
1秒前
1秒前
HEIKU应助谦让傲菡采纳,获得10
1秒前
舒涵关注了科研通微信公众号
1秒前
灰鹅发布了新的文献求助10
2秒前
可颂完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
国服懒羊羊完成签到,获得积分10
4秒前
领导范儿应助ZTT采纳,获得10
4秒前
moon发布了新的文献求助10
5秒前
小宇发布了新的文献求助10
5秒前
5秒前
Neon0524完成签到 ,获得积分10
5秒前
HEIKU应助颜绫采纳,获得50
6秒前
6秒前
Jiayou Zhang完成签到,获得积分10
6秒前
高高迎蓉发布了新的文献求助10
6秒前
徐霜完成签到 ,获得积分10
7秒前
DDXXC完成签到,获得积分10
7秒前
忧郁的续完成签到,获得积分20
7秒前
陈强发布了新的文献求助30
7秒前
wzg666完成签到,获得积分10
8秒前
8秒前
爆米花应助找不到采纳,获得10
8秒前
任性的梦菲应助圈圈采纳,获得30
8秒前
9秒前
Ava应助踏实的烙采纳,获得10
9秒前
10秒前
ChangSZ应助speedness采纳,获得10
10秒前
自由基不能聚合完成签到,获得积分10
10秒前
shone发布了新的文献求助10
11秒前
烟花应助yug采纳,获得10
11秒前
科研cc发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672