亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning with whole slide images can improve the prognostic risk stratification with stage III colorectal cancer

列线图 阶段(地层学) 医学 内科学 肿瘤科 比例危险模型 结直肠癌 人工智能 T级 癌症 总体生存率 计算机科学 生物 古生物学
作者
Caixia Sun,Bingbing Li,Genxia Wei,Weihao Qiu,Danyi Li,Xiangzhao Li,Xiangyu Liu,Wei Wei,Shuo Wang,Zhenyu Liu,Jie Tian,Liang Li
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:221: 106914-106914 被引量:25
标识
DOI:10.1016/j.cmpb.2022.106914
摘要

Adjuvant chemotherapy is recommended as standard treatment for colorectal cancer (CRC) with stage III according to TNM stage. However, outcomes are varied even among patients receiving similar treatments. We aimed to develop a prognostic signature to stratify outcomes and benefit from different chemotherapy regimens by analyzing whole slide images (WSI) using deep learning.We proposed an unsupervised deep learning network (variational autoencoder and generative adversarial network) in 180,819 image tiles from the training set (147 patients) to develop a WSI signature for predicting the disease-free survival (DFS) and overall survival (OS) of patients, and tested in validation set of 63 patients. An integrated nomogram was constructed to investigate the incremental value of deep learning signature (DLS) to TNM stage for individualized outcomes prediction.The DLS was associated with DFS and OS in both training and validation sets and proved to be an independent prognostic factor. Integrating the DLS and clinicopathologic factors showed better performance (C-index: DFS, 0.748; OS, 0.794; in the validation set) than TNM stage. In patients whose DLS and clinical risk levels were inconsistent, their risk of relapse was reclassified. In the subgroup of patients treated with 3 months, high-DLS was associated with worse DFS (hazard ratio: 3.622-7.728).The proposed based-WSI DLS improved risk stratification and could help identify patients with stage III CRC who may benefit from the prolonged duration of chemotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
22秒前
WHM25完成签到,获得积分10
29秒前
顺利的小蚂蚁完成签到,获得积分10
41秒前
FashionBoy应助害羞的采波采纳,获得10
1分钟前
Marciu33完成签到,获得积分10
1分钟前
TheaGao完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
twk发布了新的文献求助10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Lucas应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
大个应助twk采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小杏韵发布了新的文献求助10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
bonster应助科研通管家采纳,获得10
3分钟前
领导范儿应助科研通管家采纳,获得150
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
回笼觉教主完成签到,获得积分20
4分钟前
aslink完成签到,获得积分10
4分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得10
5分钟前
bonster应助科研通管家采纳,获得10
5分钟前
PAIDAXXXX完成签到,获得积分10
6分钟前
Xiaoping完成签到 ,获得积分10
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671265
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778510
捐赠科研通 2938378
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991