融雪
环境科学
地表径流
水文学(农业)
分水岭
森林地面
垃圾箱
雪
植物凋落物
营养物
农学
土壤水分
生态学
土壤科学
生物
地理
地质学
岩土工程
机器学习
计算机科学
气象学
作者
Wei Ouyang,Zeshan Wu,Xintong Cui,Pengtao Wang,Chunye Lin,Weihong Zhu
标识
DOI:10.1016/j.scitotenv.2022.156356
摘要
The leaf litter decomposition is the important chain for the nutrient cycle in forest ecosystem, but its degradation dynamics and pulse discharge patterns in freeze-thawing watershed needed complete understanding. By integrating field observations and MODIS data, the temporal-spatial distributions of snow coverage and forest leaf litter biomass were analyzed. The critical period for snowmelt runoff under warming temperature and the relatively slow degradation patterns were identified. The on-site observations snowmelt runoff showed discharge concentration and fraction dynamics of typical forest leaf litter nutrients (carbon, nitrogen, and phosphorus) in thawing period. The snowmelt runoff flow and nutrient flux observed the linear regressions with the increased temperature from -8 °C to 6 °C (r2 = 0.443-0.987). The concentration of TOC, TN, and TP reached summit value around 50.0, 6.0, and 0.5 mg L-1 in the snowmelt runoff, respectively. The fraction analysis proved that the much high composition of dissolved organic fraction and the biggest organic phosphorus percentage was 94%. The comparison experiments of forest soil with or without leaf litter cover demonstrated that the leaf litter caused a lower discharge load in the snowmelt flow, and the leaf litter cover can decease the potential transport capability of the snowmelt runoff. Coupled with remote sensing data, the watershed leaf litter nutrient discharge model was developed with snowmelt hydrological process mode. The watershed averaged discharge of TOC, TN, and TP from deciduous broad-leaved forest leaf litter was around 851.99, 75.05, and 9.78 mg·m-2, respectively. The yearly simulation showed the spatial distribution variance of the nutrient discharge loads were held by different forest types, elevations, and slopes. The critical loss area identification provided new mitigations solution. The findings suggested that seasonal discharge of forest leaf litter nutrient in thawing period acted as a key contributor to watershed water pollution.
科研通智能强力驱动
Strongly Powered by AbleSci AI