神经形态工程学
光电子学
材料科学
突触重量
计算机科学
光电探测器
波长
紫外线
视觉对象识别的认知神经科学
人工神经网络
红外线的
图像传感器
人工智能
对象(语法)
光学
物理
作者
Molla Manjurul Islam,Adithi Krishnaprasad,Durjoy Dev,Ricardo Martínez-Martínez,Victor Okonkwo,Benjamin M. Wu,Sang Sub Han,Tae‐Sung Bae,Hee‐Suk Chung,Jimmy Touma,Yeonwoong Jung,Tania Roy
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-05-25
卷期号:16 (7): 10188-10198
被引量:47
标识
DOI:10.1021/acsnano.2c01035
摘要
Neuromorphic visual systems emulating biological retina functionalities have enormous potential for in-sensor computing, with prospects of making artificial intelligence ubiquitous. Conventionally, visual information is captured by an image sensor, stored by memory units, and eventually processed by the machine learning algorithm. Here, we present an optoelectronic synapse device with multifunctional integration of all the processes required for real time object identification. Ultraviolet–visible wavelength-sensitive MoS2 FET channel with infrared sensitive PtTe2/Si gate electrode enables the device to sense, store, and process optical data for a wide range of the electromagnetic spectrum, while maintaining a low dark current. The device exhibits optical stimulation-controlled short-term and long-term potentiation, electrically driven long-term depression, synaptic weight update for multiple wavelengths of light ranging from 300 nm in ultraviolet to 2 μm in infrared. An artificial neural network developed using the extracted weight update parameters of the device can be trained to identify both single wavelength and mixed wavelength patterns. This work demonstrates a device that could potentially be used for realizing a multiwavelength neuromorphic visual system for pattern recognition and object identification.
科研通智能强力驱动
Strongly Powered by AbleSci AI