Model-based Fusion of Surface Electromyography with Kinematic and Kinetic Measurements for Monitoring of Muscle Fatigue

肌肉疲劳 肌电图 运动学 肌肉收缩 计算机科学 公制(单位) 物理医学与康复 肌肉疲劳 分布(数学) 生物医学工程 模拟 数学 工程类 物理 医学 数学分析 解剖 运营管理 经典力学
作者
Haihua Ou,Deanna H. Gates,Shane D. Johnson,Dragan Djurdjanović
出处
期刊:International journal of prognostics and health management [The Prognostics and Health Management Society]
卷期号:13 (2) 被引量:2
标识
DOI:10.36001/ijphm.2022.v13i2.3132
摘要

This study proposes a novel method for monitoring muscle fatigue using muscle-specific dynamic models which relate joint time-frequency signatures extracted from the relevant electromyogram (EMG) signals with the corresponding estimated muscle forces. Muscle forces were estimated using physics-driven musculoskeletal models which incorporate muscle lengths and contraction velocities estimated from the available kinematic and kinetic measurements. For any specific individual, such a muscle-specific dynamic model is trained using EMG and movement data collected in the early stages of an exercise, i.e., during the least-fatigued behavior. As the exercise or physical activity of that individual progresses and fatigue develops, residuals yielded by that model when approximating the newly arrived data shift and change because of the fatigue-induced changes in the underlying dynamics. In this paper, we propose quantitative evaluation of those changes via the concept of a muscle-specific Freshness Index (FI) which at any given time expresses overlaps between the distribution of that muscle’s model residuals observed on the most recently collected data and the distribution of modeling residuals observed during non-fatigued behavior. The newly proposed method was evaluated using data collected during a repetitive sawing motion experiment with 12 healthy participants. The performance of the FI as a fatigue metric was compared with the performance of the instantaneous frequency of the relevant EMG signals, which is a more traditional and widely used metric of muscle fatigue. It was found that the FI reflected the progression of muscle fatigue with desirable properties of stronger monotonic trends and smaller noise levels compared to the traditional, instantaneous frequency-based metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助MM采纳,获得10
刚刚
田様应助JoshuaChen采纳,获得10
1秒前
Ttttt完成签到,获得积分10
1秒前
瘦瘦依白应助爱吃脑袋瓜采纳,获得10
1秒前
哈哈是你发布了新的文献求助10
1秒前
震震发布了新的文献求助20
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
四川南丁格尔完成签到 ,获得积分10
4秒前
Owen应助秋纳瑞采纳,获得10
4秒前
Pan完成签到,获得积分10
4秒前
Lucas应助Jenaloe采纳,获得10
5秒前
仓颉发布了新的文献求助10
5秒前
大模型应助戚薇采纳,获得10
5秒前
嗷嗷小刺猬完成签到 ,获得积分10
5秒前
科研通AI2S应助草木采纳,获得10
5秒前
淡定的健柏完成签到 ,获得积分10
6秒前
6秒前
大个应助dudu采纳,获得10
6秒前
6秒前
7秒前
Pacer发布了新的文献求助10
7秒前
will完成签到,获得积分10
7秒前
xcxElf发布了新的文献求助10
7秒前
thousandlong发布了新的文献求助10
7秒前
诺之发布了新的文献求助10
8秒前
honeybee发布了新的文献求助10
8秒前
8秒前
9秒前
刘四毛发布了新的文献求助10
9秒前
gean发布了新的文献求助10
10秒前
过意完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助30
10秒前
英姑应助甜甜千兰采纳,获得10
10秒前
王永锋完成签到,获得积分10
11秒前
筱筱发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582