Model-based Fusion of Surface Electromyography with Kinematic and Kinetic Measurements for Monitoring of Muscle Fatigue

肌肉疲劳 肌电图 运动学 肌肉收缩 计算机科学 公制(单位) 物理医学与康复 肌肉疲劳 分布(数学) 生物医学工程 模拟 数学 工程类 物理 医学 数学分析 解剖 运营管理 经典力学
作者
Haihua Ou,Deanna H. Gates,Shane D. Johnson,Dragan Djurdjanović
出处
期刊:International journal of prognostics and health management [PHM Society]
卷期号:13 (2) 被引量:2
标识
DOI:10.36001/ijphm.2022.v13i2.3132
摘要

This study proposes a novel method for monitoring muscle fatigue using muscle-specific dynamic models which relate joint time-frequency signatures extracted from the relevant electromyogram (EMG) signals with the corresponding estimated muscle forces. Muscle forces were estimated using physics-driven musculoskeletal models which incorporate muscle lengths and contraction velocities estimated from the available kinematic and kinetic measurements. For any specific individual, such a muscle-specific dynamic model is trained using EMG and movement data collected in the early stages of an exercise, i.e., during the least-fatigued behavior. As the exercise or physical activity of that individual progresses and fatigue develops, residuals yielded by that model when approximating the newly arrived data shift and change because of the fatigue-induced changes in the underlying dynamics. In this paper, we propose quantitative evaluation of those changes via the concept of a muscle-specific Freshness Index (FI) which at any given time expresses overlaps between the distribution of that muscle’s model residuals observed on the most recently collected data and the distribution of modeling residuals observed during non-fatigued behavior. The newly proposed method was evaluated using data collected during a repetitive sawing motion experiment with 12 healthy participants. The performance of the FI as a fatigue metric was compared with the performance of the instantaneous frequency of the relevant EMG signals, which is a more traditional and widely used metric of muscle fatigue. It was found that the FI reflected the progression of muscle fatigue with desirable properties of stronger monotonic trends and smaller noise levels compared to the traditional, instantaneous frequency-based metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张头发发布了新的文献求助10
刚刚
蜀安应助zlz采纳,获得150
刚刚
DCH完成签到,获得积分10
刚刚
1秒前
华仔应助大婷子采纳,获得10
1秒前
Lucas应助友好的哈密瓜采纳,获得10
1秒前
刘唐荣完成签到,获得积分10
1秒前
XXXXXX发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
3秒前
xiaoxintaijie发布了新的文献求助10
3秒前
NexusExplorer应助chai采纳,获得10
4秒前
233完成签到,获得积分10
4秒前
sghsh完成签到,获得积分10
4秒前
4秒前
完美世界应助清蒸三文鱼采纳,获得10
4秒前
4秒前
4秒前
oohey发布了新的文献求助10
4秒前
Hello应助闪闪的jian采纳,获得10
4秒前
Hello应助哒哒哒采纳,获得10
5秒前
ll发布了新的文献求助10
5秒前
丘比特应助眼泪划过面容采纳,获得10
5秒前
LL发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
细腻灵完成签到,获得积分20
6秒前
xiaofeizhu发布了新的文献求助10
6秒前
6秒前
领导范儿应助Sepvvvvirtue采纳,获得10
6秒前
6秒前
6秒前
6秒前
hsa_ID完成签到,获得积分10
7秒前
彭蠡之滨完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
Arthors完成签到 ,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785