Model-based Fusion of Surface Electromyography with Kinematic and Kinetic Measurements for Monitoring of Muscle Fatigue

肌肉疲劳 肌电图 运动学 肌肉收缩 计算机科学 公制(单位) 物理医学与康复 肌肉疲劳 分布(数学) 生物医学工程 模拟 数学 工程类 物理 医学 数学分析 解剖 运营管理 经典力学
作者
Haihua Ou,Deanna H. Gates,Shane D. Johnson,Dragan Djurdjanović
出处
期刊:International journal of prognostics and health management [PHM Society]
卷期号:13 (2) 被引量:2
标识
DOI:10.36001/ijphm.2022.v13i2.3132
摘要

This study proposes a novel method for monitoring muscle fatigue using muscle-specific dynamic models which relate joint time-frequency signatures extracted from the relevant electromyogram (EMG) signals with the corresponding estimated muscle forces. Muscle forces were estimated using physics-driven musculoskeletal models which incorporate muscle lengths and contraction velocities estimated from the available kinematic and kinetic measurements. For any specific individual, such a muscle-specific dynamic model is trained using EMG and movement data collected in the early stages of an exercise, i.e., during the least-fatigued behavior. As the exercise or physical activity of that individual progresses and fatigue develops, residuals yielded by that model when approximating the newly arrived data shift and change because of the fatigue-induced changes in the underlying dynamics. In this paper, we propose quantitative evaluation of those changes via the concept of a muscle-specific Freshness Index (FI) which at any given time expresses overlaps between the distribution of that muscle’s model residuals observed on the most recently collected data and the distribution of modeling residuals observed during non-fatigued behavior. The newly proposed method was evaluated using data collected during a repetitive sawing motion experiment with 12 healthy participants. The performance of the FI as a fatigue metric was compared with the performance of the instantaneous frequency of the relevant EMG signals, which is a more traditional and widely used metric of muscle fatigue. It was found that the FI reflected the progression of muscle fatigue with desirable properties of stronger monotonic trends and smaller noise levels compared to the traditional, instantaneous frequency-based metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yoyo发布了新的文献求助20
4秒前
赘婿应助DD采纳,获得30
6秒前
7秒前
10秒前
左眼天堂完成签到,获得积分10
12秒前
14秒前
liang发布了新的文献求助30
14秒前
要减肥的chao完成签到,获得积分10
16秒前
16秒前
18秒前
看不懂发布了新的文献求助10
20秒前
20秒前
DD完成签到,获得积分20
22秒前
22秒前
CongCong0303发布了新的文献求助50
22秒前
stszd完成签到,获得积分10
24秒前
DD发布了新的文献求助30
24秒前
danielbest1234完成签到,获得积分10
25秒前
Hello应助苦瓜炒蛋采纳,获得30
25秒前
le完成签到,获得积分10
25秒前
nacheol应助VENTUS采纳,获得10
26秒前
深情安青应助嘻嘻采纳,获得10
27秒前
小楼发布了新的文献求助10
29秒前
HEIKU应助包容的葵阴采纳,获得10
29秒前
Narcissus完成签到,获得积分10
29秒前
科研fw完成签到,获得积分10
32秒前
aaa完成签到,获得积分10
32秒前
传统的开山完成签到,获得积分10
34秒前
Zips完成签到,获得积分10
34秒前
37秒前
爱鱼人士应助鲤鱼灵阳采纳,获得10
37秒前
YI发布了新的文献求助20
38秒前
liang发布了新的文献求助10
38秒前
每天都很困完成签到,获得积分10
38秒前
善学以致用应助kakafan采纳,获得10
39秒前
CipherSage应助diu采纳,获得10
40秒前
清脆愫完成签到 ,获得积分10
40秒前
香蕉觅云应助当归参子采纳,获得10
40秒前
ff发布了新的文献求助10
40秒前
旱田蜗牛发布了新的文献求助10
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293585
求助须知:如何正确求助?哪些是违规求助? 2929476
关于积分的说明 8442265
捐赠科研通 2601632
什么是DOI,文献DOI怎么找? 1420043
科研通“疑难数据库(出版商)”最低求助积分说明 660486
邀请新用户注册赠送积分活动 643091