Learned Factor Graphs for Inference From Stationary Time Sequences

因子图 推论 计算机科学 人工智能 近似推理 计算 人工神经网络 算法 因子(编程语言) 图形 机器学习 模式识别(心理学) 理论计算机科学 解码方法 程序设计语言
作者
Nir Shlezinger,Nariman Farsad,Yonina C. Eldar,Andrea Goldsmith
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:70: 366-380 被引量:23
标识
DOI:10.1109/tsp.2021.3139506
摘要

The design of methods for inference from time sequences has traditionally relied on statistical models that describe the relation between a latent desired sequence and the observed one. A broad family of model-based algorithms have been derived to carry out inference at controllable complexity using recursive computations over the factor graph representing the underlying distribution. An alternative model-agnostic approach utilizes machine learning (ML) methods. Here we propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences. In the proposed approach, neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence, rather than the complete inference task. By exploiting stationary properties of this distribution, the resulting approach can be applied to sequences of varying temporal duration. Learned factor graphs can be realized using compact neural networks that are trainable using small training sets, or alternatively, be used to improve upon existing deep inference systems. We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data, and can be applied to sequences of different lengths. Our experimental results demonstrate the ability of the proposed learned factor graphs to learn from small training sets to carry out accurate inference for sleep stage detection using the Sleep-EDF dataset, as well as for symbol detection in digital communications with unknown channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助怀瑾采纳,获得10
刚刚
微笑友灵完成签到,获得积分10
3秒前
怂怂鼠发布了新的文献求助10
4秒前
4秒前
Leslie发布了新的文献求助10
4秒前
5秒前
6秒前
喃喃完成签到 ,获得积分10
9秒前
本森完成签到,获得积分10
9秒前
宓广缘发布了新的文献求助10
9秒前
Sean0382发布了新的文献求助10
10秒前
10秒前
12秒前
12秒前
Linnnn发布了新的文献求助10
12秒前
wingsan完成签到 ,获得积分10
13秒前
Lin发布了新的文献求助10
13秒前
NexusExplorer应助阳光的道消采纳,获得10
14秒前
Lucas应助阳光的道消采纳,获得10
14秒前
李爱国应助阳光的道消采纳,获得10
14秒前
上官若男应助阳光的道消采纳,获得10
14秒前
领导范儿应助阳光的道消采纳,获得10
14秒前
无花果应助阳光的道消采纳,获得10
14秒前
爆米花应助阳光的道消采纳,获得10
14秒前
14秒前
科研通AI2S应助Qqqq采纳,获得10
15秒前
sky发布了新的文献求助10
16秒前
科研完成签到,获得积分10
16秒前
amo发布了新的文献求助30
17秒前
天天快乐应助Sean0382采纳,获得10
17秒前
裘问薇完成签到,获得积分10
19秒前
19秒前
乔乔完成签到,获得积分10
20秒前
闹闹加油发布了新的文献求助30
21秒前
21秒前
爆米花应助LL采纳,获得10
22秒前
HDJ完成签到,获得积分10
23秒前
111完成签到,获得积分10
24秒前
Leslie完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968983
求助须知:如何正确求助?哪些是违规求助? 4226239
关于积分的说明 13162306
捐赠科研通 4013460
什么是DOI,文献DOI怎么找? 2196115
邀请新用户注册赠送积分活动 1209441
关于科研通互助平台的介绍 1123519