石墨烯
钼
塔菲尔方程
电催化剂
材料科学
过电位
化学工程
无机化学
杂原子
氢
碳化物
电化学
纳米技术
化学
电极
冶金
有机化学
物理化学
工程类
戒指(化学)
作者
Peng Zuo,Yefeng Liu,Xiaolei Liu,Weizhou Jiao,Ruixin Wang
标识
DOI:10.1016/j.ijhydene.2022.06.280
摘要
Based on the ever-growing interest of heteroatoms (e.g., P, N, S, transition metals) doping into molybdenum carbide and graphene for electrochemical reactions, herein, a ternary phosphomolybdic acid-polyethyleneimine/graphene oxide nanocomposite as a suitable precursor was developed to not only uniformly hybridize molybdenum and carbon source to perform the controllable in situ growth of well-defined molybdenum carbide nanostructure on graphene by annealing, but also synchronously dope N and P atoms into molybdenum carbide crystal lattice and graphene. The as-prepared hybrid showed remarkable electrocatalytic activity and high stability for hydrogen evolution reaction in basic media, due to the following favorable features, i.e. a large accessible active sites afforded by the ultrafine molybdenum carbide, the heteroatoms doped, the regulated electronic structure, the balanced thermodynamics between hydrogen adsorption and desorption, the accelerated charge/mass transfer ability by the ultrathin and defective carbon layer, and the protection of molybdenum carbide by carbon layer. As a result, it only needed a small overpotential of 47 mV to drive 10 mA cm−2 and a low onset potential of 10 mV, as well as a small Tafel slope of 56.8 mV·dec−1, thus suggesting its promising potential for hydrogen evolution electrocatalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI