亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on Multiaircrafts Cooperative Arraying to Jam Based on Multiobjective Moth-Flame Optimization Algorithm

计算机科学 优化算法 数学优化 算法 数学
作者
Mingxi Ma,Jun Wu,Yue Shi,Long Yan,Wei Lu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 80539-80554 被引量:4
标识
DOI:10.1109/access.2022.3193094
摘要

The problem of cooperative arraying to jam is an important part of EW mission planning.Aiming at the problem that multi-objective optimization algorithm is easy to fall into local optimum and converge in three-objective optimization, a multi-aircraft jamming and cooperative arraying method based on improved multi-objective Moth-flame optimization algorithm is proposed.Firstly, the simulation environment is established by using digital elevation map and radar detection model.Then, based on the multi-objective Moth-flame optimization algorithm, the population initialization is completed by using Logistic-Tent chaotic map, which increases the diversity and uniformity of the solution and improves the search ability of the algorithm; Then, the decision factor and Gaussian difference mutation are introduced, which makes the algorithm not only accept the current solution with a certain probability, but also jump out of the current solution and search again according to the disturbance, thus enhancing the search ability of the algorithm; Finally, by comparing with NSGA-II, MOEA/D, MOPSO and NSMFO algorithms on test functions of ZDT and DTLZ series, the performance of the algorithm is verified, and it is proved that multiobjective Moth-flame optimization algorithm is better than other algorithms in both convergence and diversity.In addition, compared with the NSMFO and MOEA/D algorithms in the arraying simulation experiment.The values of the interference power, the width of the route safety zone and the detection area of the radar obtained by the algorithm in this paper, are 117.9kw, 46 km, and 1727 km 2 .Compared with the results of the other two algorithms, the effectiveness of interference is improved by 39.8%, 22.8% and 41.9% respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy发布了新的文献求助10
1秒前
斯文败类应助shinn采纳,获得10
4秒前
5秒前
10秒前
周亚平发布了新的文献求助10
11秒前
cdu完成签到,获得积分10
13秒前
定西完成签到,获得积分10
13秒前
陈思发布了新的文献求助10
15秒前
爆米花应助flyabc采纳,获得10
16秒前
17秒前
17秒前
李健的粉丝团团长应助HE采纳,获得10
18秒前
完美世界应助发的不太好采纳,获得10
19秒前
Orange应助周亚平采纳,获得10
19秒前
20秒前
shinn发布了新的文献求助10
21秒前
ohwhale完成签到 ,获得积分10
21秒前
23秒前
Jasper应助科研通管家采纳,获得10
24秒前
24秒前
Rita应助科研通管家采纳,获得10
24秒前
慕青应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
25秒前
26秒前
28秒前
flyabc发布了新的文献求助10
28秒前
29秒前
123456发布了新的文献求助10
30秒前
30秒前
科研小白发布了新的文献求助10
31秒前
LY_Qin完成签到,获得积分10
32秒前
32秒前
隐形曼青应助阳光的映雁采纳,获得10
33秒前
思源应助wurugu采纳,获得10
34秒前
研友_ngX12Z完成签到 ,获得积分10
34秒前
孤独的根号3完成签到,获得积分20
37秒前
量子星尘发布了新的文献求助10
39秒前
田様应助yyy采纳,获得10
39秒前
AX完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772246
求助须知:如何正确求助?哪些是违规求助? 5596912
关于积分的说明 15429307
捐赠科研通 4905268
什么是DOI,文献DOI怎么找? 2639301
邀请新用户注册赠送积分活动 1587230
关于科研通互助平台的介绍 1542080