Research on Multiaircrafts Cooperative Arraying to Jam Based on Multiobjective Moth-Flame Optimization Algorithm

计算机科学 优化算法 数学优化 算法 数学
作者
Mingxi Ma,Jun Wu,Yue Shi,Long Yan,Wei Lu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 80539-80554 被引量:4
标识
DOI:10.1109/access.2022.3193094
摘要

The problem of cooperative arraying to jam is an important part of EW mission planning.Aiming at the problem that multi-objective optimization algorithm is easy to fall into local optimum and converge in three-objective optimization, a multi-aircraft jamming and cooperative arraying method based on improved multi-objective Moth-flame optimization algorithm is proposed.Firstly, the simulation environment is established by using digital elevation map and radar detection model.Then, based on the multi-objective Moth-flame optimization algorithm, the population initialization is completed by using Logistic-Tent chaotic map, which increases the diversity and uniformity of the solution and improves the search ability of the algorithm; Then, the decision factor and Gaussian difference mutation are introduced, which makes the algorithm not only accept the current solution with a certain probability, but also jump out of the current solution and search again according to the disturbance, thus enhancing the search ability of the algorithm; Finally, by comparing with NSGA-II, MOEA/D, MOPSO and NSMFO algorithms on test functions of ZDT and DTLZ series, the performance of the algorithm is verified, and it is proved that multiobjective Moth-flame optimization algorithm is better than other algorithms in both convergence and diversity.In addition, compared with the NSMFO and MOEA/D algorithms in the arraying simulation experiment.The values of the interference power, the width of the route safety zone and the detection area of the radar obtained by the algorithm in this paper, are 117.9kw, 46 km, and 1727 km 2 .Compared with the results of the other two algorithms, the effectiveness of interference is improved by 39.8%, 22.8% and 41.9% respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵泽发布了新的文献求助10
刚刚
1秒前
柚鹿完成签到,获得积分20
1秒前
1秒前
领导范儿应助kkPi采纳,获得10
1秒前
知秋发布了新的文献求助10
1秒前
鲤跃完成签到,获得积分10
1秒前
2秒前
一亩蔬菜完成签到,获得积分10
2秒前
3秒前
3秒前
符从丹完成签到,获得积分10
3秒前
pluto应助wenwenya采纳,获得10
4秒前
番薯鱼完成签到,获得积分10
4秒前
zzz完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Zx_1993应助OYZY采纳,获得20
6秒前
是晓宇啊发布了新的文献求助10
6秒前
6秒前
JamesPei应助辞羽采纳,获得10
6秒前
小蘑菇应助成就含玉采纳,获得10
7秒前
乜乜关注了科研通微信公众号
7秒前
勤劳蚂蚁发布了新的文献求助20
7秒前
无他完成签到 ,获得积分20
8秒前
今后应助123采纳,获得10
8秒前
张景灿完成签到,获得积分10
8秒前
wenge发布了新的文献求助10
8秒前
8秒前
Joker发布了新的文献求助10
9秒前
9秒前
英姑应助麻喽采纳,获得10
9秒前
领导范儿应助阿杜阿杜采纳,获得10
9秒前
9秒前
叶宇豪发布了新的文献求助10
10秒前
赘婿应助Dreamhappy采纳,获得10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593772
求助须知:如何正确求助?哪些是违规求助? 4679592
关于积分的说明 14810710
捐赠科研通 4644771
什么是DOI,文献DOI怎么找? 2534653
邀请新用户注册赠送积分活动 1502712
关于科研通互助平台的介绍 1469375