Research on Multiaircrafts Cooperative Arraying to Jam Based on Multiobjective Moth-Flame Optimization Algorithm

计算机科学 优化算法 数学优化 算法 数学
作者
Mingxi Ma,Jun Wu,Yue Shi,Long Yan,Wei Lu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 80539-80554 被引量:4
标识
DOI:10.1109/access.2022.3193094
摘要

The problem of cooperative arraying to jam is an important part of EW mission planning.Aiming at the problem that multi-objective optimization algorithm is easy to fall into local optimum and converge in three-objective optimization, a multi-aircraft jamming and cooperative arraying method based on improved multi-objective Moth-flame optimization algorithm is proposed.Firstly, the simulation environment is established by using digital elevation map and radar detection model.Then, based on the multi-objective Moth-flame optimization algorithm, the population initialization is completed by using Logistic-Tent chaotic map, which increases the diversity and uniformity of the solution and improves the search ability of the algorithm; Then, the decision factor and Gaussian difference mutation are introduced, which makes the algorithm not only accept the current solution with a certain probability, but also jump out of the current solution and search again according to the disturbance, thus enhancing the search ability of the algorithm; Finally, by comparing with NSGA-II, MOEA/D, MOPSO and NSMFO algorithms on test functions of ZDT and DTLZ series, the performance of the algorithm is verified, and it is proved that multiobjective Moth-flame optimization algorithm is better than other algorithms in both convergence and diversity.In addition, compared with the NSMFO and MOEA/D algorithms in the arraying simulation experiment.The values of the interference power, the width of the route safety zone and the detection area of the radar obtained by the algorithm in this paper, are 117.9kw, 46 km, and 1727 km 2 .Compared with the results of the other two algorithms, the effectiveness of interference is improved by 39.8%, 22.8% and 41.9% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懦弱的金鱼完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
领导范儿应助qwe1108采纳,获得10
3秒前
傻傻尊主发布了新的文献求助10
4秒前
4秒前
123mmmm完成签到,获得积分10
4秒前
行大运发布了新的文献求助10
4秒前
滴滴滴滴发布了新的文献求助10
5秒前
奕奕发布了新的文献求助10
5秒前
传奇3应助ZHOUJING采纳,获得10
5秒前
6秒前
Somnolence咩发布了新的文献求助10
6秒前
楠楠1发布了新的文献求助10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
烟花应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
加菲丰丰应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
9秒前
yiyi1发布了新的文献求助10
9秒前
星辰大海应助善良安南采纳,获得10
9秒前
10秒前
卡皮巴拉完成签到 ,获得积分10
10秒前
震动的如霜完成签到,获得积分10
11秒前
酷波er应助傻傻尊主采纳,获得10
12秒前
orixero应助Somnolence咩采纳,获得10
13秒前
13秒前
Crystal发布了新的文献求助10
13秒前
彭于晏应助Zhang采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150106
求助须知:如何正确求助?哪些是违规求助? 2801196
关于积分的说明 7843534
捐赠科研通 2458660
什么是DOI,文献DOI怎么找? 1308585
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721