Visualization of a Machine Learning Framework toward Highly Sensitive Qualitative Analysis by SERS

可视化 可解释性 灵敏度(控制系统) 跟踪(心理语言学) 随机森林 化学 过程(计算) 计算机科学 极限(数学) 数据挖掘 鉴定(生物学) 数据可视化 拉曼光谱 人工智能 算法 机器学习 模式识别(心理学) 数学分析 语言学 哲学 植物 数学 电子工程 生物 工程类 操作系统 物理 光学
作者
Siheng Luo,Weili Wang,Zhiqiang Zhou,Yi Xie,Bin Ren,Guokun Liu,Zhong‐Qun Tian
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (28): 10151-10158 被引量:17
标识
DOI:10.1021/acs.analchem.2c01450
摘要

Surface-enhanced Raman spectroscopy (SERS), providing near-single-molecule-level fingerprint information, is a powerful tool for the trace analysis of a target in a complicated matrix and is especially facilitated by the development of modern machine learning algorithms. However, both the high demand of mass data and the low interpretability of the mysterious black-box operation significantly limit the well-trained model to real systems in practical applications. Aiming at these two issues, we constructed a novel machine learning algorithm-based framework (Vis-CAD), integrating visual random forest, characteristic amplifier, and data augmentation. The introduction of data augmentation significantly reduced the requirement of mass data, and the visualization of the random forest clearly presented the captured features, by which one was able to determine the reliability of the algorithm. Taking the trace analysis of individual polycyclic aromatic hydrocarbons in a mixture as an example, a trustworthy accuracy no less than 99% was realized under the optimized condition. The visualization of the algorithm framework distinctly demonstrated that the captured feature was well correlated to the characteristic Raman peaks of each individual. Furthermore, the sensitivity toward the trace individual could be improved by least 1 order of magnitude as compared to that with the naked eye. The proposed algorithm distinguished by the lesser demand of mass data and the visualization of the operation process offers a new way for the indestructible application of machine learning algorithms, which would bring push-to-the-limit sensitivity toward the qualitative and quantitative analysis of trace targets, not only in the field of SERS, but also in the much wider spectroscopy world. It is implemented in the Python programming language and is open-source at https://github.com/3331822w/Vis-CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Prandtl完成签到 ,获得积分10
刚刚
1秒前
zfzf0422完成签到 ,获得积分10
2秒前
上官若男应助jackie采纳,获得10
2秒前
2秒前
我是站长才怪应助Benliu采纳,获得20
3秒前
3秒前
zh20130完成签到,获得积分10
3秒前
3秒前
TT发布了新的文献求助10
4秒前
Star1983发布了新的文献求助10
4秒前
研友_LXdbaL完成签到,获得积分10
5秒前
6秒前
在水一方应助66采纳,获得10
7秒前
7秒前
7秒前
缘一发布了新的文献求助10
8秒前
junzilan发布了新的文献求助10
9秒前
CipherSage应助赖道之采纳,获得10
10秒前
ccc完成签到,获得积分10
10秒前
10秒前
10秒前
13秒前
Pauline完成签到,获得积分10
15秒前
jackie发布了新的文献求助10
15秒前
笨笨摇伽发布了新的文献求助10
17秒前
科目三应助皓月繁星采纳,获得10
17秒前
tomato完成签到,获得积分20
19秒前
CodeCraft应助缘一采纳,获得10
20秒前
小二郎应助刘铭晨采纳,获得10
20秒前
20秒前
大个应助风雨1210采纳,获得10
20秒前
一壶清酒完成签到,获得积分10
20秒前
21秒前
tomato发布了新的文献求助30
22秒前
陈莹发布了新的文献求助10
23秒前
24秒前
24秒前
小狗同志006完成签到,获得积分10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808