Visualization of a Machine Learning Framework toward Highly Sensitive Qualitative Analysis by SERS

可视化 可解释性 灵敏度(控制系统) 跟踪(心理语言学) 随机森林 化学 过程(计算) 计算机科学 极限(数学) 数据挖掘 鉴定(生物学) 数据可视化 拉曼光谱 人工智能 算法 机器学习 模式识别(心理学) 数学分析 语言学 哲学 植物 数学 电子工程 生物 工程类 操作系统 物理 光学
作者
Siheng Luo,Weili Wang,Zhiqiang Zhou,Yi Xie,Bin Ren,Guokun Liu,Zhong‐Qun Tian
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (28): 10151-10158 被引量:17
标识
DOI:10.1021/acs.analchem.2c01450
摘要

Surface-enhanced Raman spectroscopy (SERS), providing near-single-molecule-level fingerprint information, is a powerful tool for the trace analysis of a target in a complicated matrix and is especially facilitated by the development of modern machine learning algorithms. However, both the high demand of mass data and the low interpretability of the mysterious black-box operation significantly limit the well-trained model to real systems in practical applications. Aiming at these two issues, we constructed a novel machine learning algorithm-based framework (Vis-CAD), integrating visual random forest, characteristic amplifier, and data augmentation. The introduction of data augmentation significantly reduced the requirement of mass data, and the visualization of the random forest clearly presented the captured features, by which one was able to determine the reliability of the algorithm. Taking the trace analysis of individual polycyclic aromatic hydrocarbons in a mixture as an example, a trustworthy accuracy no less than 99% was realized under the optimized condition. The visualization of the algorithm framework distinctly demonstrated that the captured feature was well correlated to the characteristic Raman peaks of each individual. Furthermore, the sensitivity toward the trace individual could be improved by least 1 order of magnitude as compared to that with the naked eye. The proposed algorithm distinguished by the lesser demand of mass data and the visualization of the operation process offers a new way for the indestructible application of machine learning algorithms, which would bring push-to-the-limit sensitivity toward the qualitative and quantitative analysis of trace targets, not only in the field of SERS, but also in the much wider spectroscopy world. It is implemented in the Python programming language and is open-source at https://github.com/3331822w/Vis-CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助包容若风采纳,获得10
1秒前
2秒前
桃子完成签到 ,获得积分10
4秒前
4秒前
4秒前
科研通AI2S应助欢欢采纳,获得10
9秒前
英俊的铭应助欢欢采纳,获得30
9秒前
10秒前
虚心元绿发布了新的文献求助10
12秒前
勤恳的小小完成签到,获得积分10
13秒前
adi完成签到,获得积分10
13秒前
司耶发布了新的文献求助10
15秒前
16秒前
美人鱼听不了超声波关注了科研通微信公众号
17秒前
Lee完成签到,获得积分10
17秒前
脑残骑士老张完成签到,获得积分10
17秒前
欢欢完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
虚心元绿完成签到,获得积分10
21秒前
妇产科医生完成签到 ,获得积分10
23秒前
24秒前
chengxue发布了新的文献求助10
25秒前
skier发布了新的文献求助30
25秒前
tmuguoli发布了新的文献求助10
30秒前
bkagyin应助彩色的忆丹采纳,获得20
30秒前
31秒前
32秒前
Ghooor发布了新的文献求助10
32秒前
田様应助尼尼采纳,获得10
33秒前
rayzhanghl完成签到,获得积分10
33秒前
搞怪汽车完成签到,获得积分10
34秒前
xun完成签到,获得积分10
35秒前
35秒前
35秒前
仙林AK47发布了新的文献求助20
36秒前
隐形曼青应助沐言采纳,获得10
36秒前
37秒前
MoXian完成签到,获得积分10
37秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266571
求助须知:如何正确求助?哪些是违规求助? 2906288
关于积分的说明 8337415
捐赠科研通 2576718
什么是DOI,文献DOI怎么找? 1400683
科研通“疑难数据库(出版商)”最低求助积分说明 654844
邀请新用户注册赠送积分活动 633761