Visualization of a Machine Learning Framework toward Highly Sensitive Qualitative Analysis by SERS

可视化 可解释性 灵敏度(控制系统) 跟踪(心理语言学) 随机森林 化学 过程(计算) 计算机科学 极限(数学) 数据挖掘 鉴定(生物学) 数据可视化 人工智能 算法 机器学习 模式识别(心理学) 数学分析 语言学 哲学 植物 数学 电子工程 生物 工程类 操作系统
作者
Siheng Luo,Weili Wang,Zhifan Zhou,Yi Xie,Bin Ren,Guokun Liu,Zhong‐Qun Tian
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (28): 10151-10158 被引量:28
标识
DOI:10.1021/acs.analchem.2c01450
摘要

Surface-enhanced Raman spectroscopy (SERS), providing near-single-molecule-level fingerprint information, is a powerful tool for the trace analysis of a target in a complicated matrix and is especially facilitated by the development of modern machine learning algorithms. However, both the high demand of mass data and the low interpretability of the mysterious black-box operation significantly limit the well-trained model to real systems in practical applications. Aiming at these two issues, we constructed a novel machine learning algorithm-based framework (Vis-CAD), integrating visual random forest, characteristic amplifier, and data augmentation. The introduction of data augmentation significantly reduced the requirement of mass data, and the visualization of the random forest clearly presented the captured features, by which one was able to determine the reliability of the algorithm. Taking the trace analysis of individual polycyclic aromatic hydrocarbons in a mixture as an example, a trustworthy accuracy no less than 99% was realized under the optimized condition. The visualization of the algorithm framework distinctly demonstrated that the captured feature was well correlated to the characteristic Raman peaks of each individual. Furthermore, the sensitivity toward the trace individual could be improved by least 1 order of magnitude as compared to that with the naked eye. The proposed algorithm distinguished by the lesser demand of mass data and the visualization of the operation process offers a new way for the indestructible application of machine learning algorithms, which would bring push-to-the-limit sensitivity toward the qualitative and quantitative analysis of trace targets, not only in the field of SERS, but also in the much wider spectroscopy world. It is implemented in the Python programming language and is open-source at https://github.com/3331822w/Vis-CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
房天川发布了新的文献求助30
1秒前
66完成签到,获得积分20
1秒前
彭于晏应助hailiangzheng采纳,获得10
1秒前
科目三应助天真的宝马采纳,获得10
1秒前
Bear完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
天天快乐应助kww采纳,获得10
2秒前
周舟发布了新的文献求助10
3秒前
zhengwu发布了新的文献求助10
3秒前
希望天下0贩的0应助LL采纳,获得10
3秒前
66发布了新的文献求助10
4秒前
高山我梦发布了新的文献求助10
4秒前
蓦回完成签到,获得积分20
4秒前
落寞依珊发布了新的文献求助10
5秒前
爆米花应助汤飞柏采纳,获得10
5秒前
英姑应助小妖采纳,获得10
5秒前
5秒前
5秒前
范雅寒完成签到 ,获得积分10
6秒前
烦人应助飘逸的奇异果采纳,获得10
6秒前
7秒前
杰克开膛手完成签到,获得积分10
7秒前
8秒前
HeiXiU完成签到,获得积分10
8秒前
顺利秋尽发布了新的文献求助30
8秒前
李健应助蓦回采纳,获得10
8秒前
楼萌黑发布了新的文献求助10
8秒前
9秒前
9秒前
jjdgangan完成签到,获得积分10
9秒前
9秒前
充电宝应助复杂的鸿煊采纳,获得10
9秒前
9秒前
Lucas应助世隐采纳,获得10
9秒前
Ava应助恬昱采纳,获得10
9秒前
9秒前
10秒前
周舟完成签到,获得积分20
10秒前
哈哈应助西门博超采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813