(Digital Presentation) Nickel-Iron Electrocatalysts Modified with Group 11 Metals Achieving 1 A cm−2 of Oxygen Evolution in Buffered Near-Neutral pH Electrolyte

析氧 无机化学 电解质 电催化剂 电解 过电位 化学 过渡金属 氧化物 催化作用 电极 电化学 有机化学 物理化学 生物化学
作者
Takeshi Nishimoto,Tatsuya Shinagawa,Kazuhiro Takanabe
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (36): 1557-1557
标识
DOI:10.1149/ma2022-01361557mtgabs
摘要

Electrocatalytic processes driven by the renewable electricity will play a pivotal role to achieve sustainable in our society, whereby the thermodynamically stable chemicals are converted into value-added products or energy carriers. For instance, the water electrolysis produces green hydrogen, and the carbon dioxide electrolysis yields commodity chemicals such as ethylene or carbon monoxide. [1] These processes commonly share an anodic half-reaction of oxygen evolution reaction (OER) that requires large overpotentials due to its slow kinetics, leading to the significant loss of overall energy efficiency. [2] This is particularly the case at near-neutral pH, [3] which however is likely the desired condition for electrocatalytic CO 2 reduction due to the lessened loss of carbon dioxide via carbonate formation that prevails in alkaline conditions. [4] Toward the large-scale operation of these technologies, it is highly desired to develop an active, stable, and earth-abundant metal based electrocatalyst that catalyzes the OER at near-neutral pH and high current densities. The present study reports on our discovery of the transition metal-based electrocatalysts that efficiently catalyze OER in carbonate buffer electrolyte at near-neutral pH. Firstly, a variety of electrodes were fabricated by electro-deposition of transition metals (manganese, iron, cobalt, copper) on electrochemically activated Ni (ECA-Ni) substrates [5] with nanostructured surface. Their electrocatalytic testing revealed that iron oxide (Fe-O) modified ECA-Ni achieved a current density of 100 mA cm −2 at an overpotential of ca. 280 mV in dense electrolyte of 1.5 mol kg −1 K-carbonate solution and 353 K, whose pH was adjusted to pH 10.5 at 298 K prior to the testing. This pH level was essential to achieve stable operation using the Ni-Fe electrode. Subsequently, group 11 metals of copper, silver, or gold were introduced into Fe-O/ECA-Ni via co-electrodeposition to tailor the nature of active site for improved OER. Remarkably, electrodes of Fe-Cu-O/ECA-Ni and Fe-Au-O/ECA-Ni catalyzed the OER at a rate of 1 A cm −2 and an overpotential of ca. 330 mV, whose figure is comparable to those in extremely alkaline conditions (Figure 1). Long-term and on-off stability testing revealed that the developed electrodes maintained its performance. Our characterization on double-layer capacitance indicated the enlarged surface area of Fe-Cu-O and Fe-Au-O electrodes with respect to the pristine Fe-O counterparts, which partly contributed to the improved OER performance. In addition, ex situ X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy concurrently pointed to the presence of stable Fe(III) species for Fe-Cu-O/ECA-Ni, plausibly FeOOH. The present study discovered transition metal based electrocatalysts for the OER at near-neutral pH and high current densities, achieving comparable performance to those in alkaline conditions, which is significant given the merits of near-neutral pH condition for CO 2 reduction. These findings represent the potentiality of near-neutral pH electrochemical system on industrial scale, which can help to construct a sustainable society. Reference [1] S. Chu, A. Majumdar , Nature 2012 , 488 , 294. [2] T. Reier, H. N. Nong, D. Teschner, R. Schlögl, P. Strasser, Adv. Energy Mater. 2017 , 7 , 1601275. [3] T. Nishimoto, T. Shinagawa, T. Naito, K. Takanabe, ChemSusChem 2021 , 14 , 1554. [4] J. A. Rabinowitz, M. W. Kanan, Nat. Commun. 2020 , 11 , 5231. [5] T. Shinagawa, M. T.-K. Ng, K. Takanabe, Angew. Chem. Int. Ed. 2017 , 56 , 5061. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助不安豁采纳,获得10
刚刚
huifang发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
67发布了新的文献求助10
1秒前
代萌萌完成签到,获得积分10
1秒前
啊哈哈哈发布了新的文献求助10
2秒前
2秒前
四喜格格完成签到,获得积分10
3秒前
科研通AI5应助Laus采纳,获得10
3秒前
Godspeed发布了新的文献求助10
4秒前
悦耳的乐松完成签到,获得积分10
5秒前
星星泡饭发布了新的文献求助10
5秒前
着急的语儿完成签到,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
赘婿应助科研通管家采纳,获得30
5秒前
差劲先森完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
科目三应助goodgoodstudy采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
Wu发布了新的文献求助10
6秒前
6秒前
lemon应助科研通管家采纳,获得20
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
打打应助聪聪great采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
7秒前
无名完成签到,获得积分10
7秒前
打打应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得40
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
只A不B应助科研通管家采纳,获得30
7秒前
7秒前
SYanan完成签到 ,获得积分10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762