FLITC: A Novel Federated Learning-Based Method for IoT Traffic Classification

计算机科学 服务质量 供应 交通分类 计算机网络 云计算 物联网 人工智能 应用层 机器学习 人工神经网络 分类器(UML) 分布式计算 计算机安全 软件部署 操作系统
作者
Mahmoud Abbasi,Amir Taherkordi,Amin Shahraki
标识
DOI:10.1109/smartcomp55677.2022.00055
摘要

Internet of Things (IoT) systems are rightly receiving considerable interest for many real-world applications, from in-body networks to satellite networks. Such a massive-scale system generates a considerable amount of traffic data, making IoT systems a distributed data source generator. For many reasons, such as the functionality of IoT applications and Quality of Service (QoS) provisioning, classifying these traffic data is of high importance. In the last few years, widespread interest has been expressed in applying Machine Learning (ML)-based techniques for Network Traffic Classification (NTC) tasks. However, the traditional centralized learning-based traffic classifiers pose serious challenges, especially in IoT networks. The centralized ML techniques call for collecting a large amount of data from various IoT devices, which in turn introduces data governance and privacy challenges. Furthermore, in the centralized ML, training data need to be transferred to the Cloud, which increases communication cost and latency. To address these problems, we propose Federated Learning (FL) Internet of Things (IoT) Traffic Classifier (FLITC)-a Federated Learning (FL)-based IoT traffic classification method which is based on the Multi-Layer Perception (MLP) neural network and holds the local data unimpaired on IoT devices by sending only the learned parameters to the aggregation server. Our experimental results show that the FLITC beats centralized learning in preserving the privacy of sensitive data and offers a better degree of accuracy at the cost of a longer training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyy0202完成签到,获得积分10
刚刚
刚刚
大个应助lx采纳,获得10
1秒前
可爱的函函应助萌小鱼采纳,获得10
1秒前
1秒前
善学以致用应助石榴采纳,获得10
2秒前
Rottyyii发布了新的文献求助20
2秒前
2秒前
平淡访冬发布了新的文献求助20
2秒前
潇洒莞完成签到 ,获得积分10
2秒前
1927592156完成签到,获得积分20
2秒前
2秒前
lin完成签到,获得积分10
3秒前
3秒前
杰尼龟006完成签到,获得积分10
3秒前
科研女郎发布了新的文献求助10
3秒前
孟莱完成签到 ,获得积分10
3秒前
death123517完成签到,获得积分10
3秒前
Cc完成签到,获得积分10
4秒前
单薄的凡灵完成签到,获得积分10
4秒前
昀恩Lee完成签到,获得积分10
5秒前
不安溪灵完成签到,获得积分10
5秒前
5秒前
CodeCraft应助羊咩咩采纳,获得10
6秒前
Sun发布了新的文献求助10
6秒前
Wdw2236发布了新的文献求助10
6秒前
jz发布了新的文献求助10
7秒前
浮游应助郢都小镇采纳,获得10
7秒前
asa完成签到,获得积分20
7秒前
汉堡包应助lelele采纳,获得10
7秒前
王之争霸完成签到,获得积分10
7秒前
7秒前
8秒前
温梦花雨发布了新的文献求助10
8秒前
喵喵完成签到,获得积分10
8秒前
zzw完成签到,获得积分10
8秒前
hahahaha完成签到,获得积分10
8秒前
善良的采蓝完成签到,获得积分20
9秒前
唯心止论完成签到,获得积分10
9秒前
kyleaa完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396226
求助须知:如何正确求助?哪些是违规求助? 4516586
关于积分的说明 14060533
捐赠科研通 4428555
什么是DOI,文献DOI怎么找? 2432080
邀请新用户注册赠送积分活动 1424344
关于科研通互助平台的介绍 1403563