FLITC: A Novel Federated Learning-Based Method for IoT Traffic Classification

计算机科学 服务质量 供应 交通分类 计算机网络 云计算 物联网 人工智能 应用层 机器学习 人工神经网络 分类器(UML) 分布式计算 计算机安全 软件部署 操作系统
作者
Mahmoud Abbasi,Amir Taherkordi,Amin Shahraki
标识
DOI:10.1109/smartcomp55677.2022.00055
摘要

Internet of Things (IoT) systems are rightly receiving considerable interest for many real-world applications, from in-body networks to satellite networks. Such a massive-scale system generates a considerable amount of traffic data, making IoT systems a distributed data source generator. For many reasons, such as the functionality of IoT applications and Quality of Service (QoS) provisioning, classifying these traffic data is of high importance. In the last few years, widespread interest has been expressed in applying Machine Learning (ML)-based techniques for Network Traffic Classification (NTC) tasks. However, the traditional centralized learning-based traffic classifiers pose serious challenges, especially in IoT networks. The centralized ML techniques call for collecting a large amount of data from various IoT devices, which in turn introduces data governance and privacy challenges. Furthermore, in the centralized ML, training data need to be transferred to the Cloud, which increases communication cost and latency. To address these problems, we propose Federated Learning (FL) Internet of Things (IoT) Traffic Classifier (FLITC)-a Federated Learning (FL)-based IoT traffic classification method which is based on the Multi-Layer Perception (MLP) neural network and holds the local data unimpaired on IoT devices by sending only the learned parameters to the aggregation server. Our experimental results show that the FLITC beats centralized learning in preserving the privacy of sensitive data and offers a better degree of accuracy at the cost of a longer training time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
诗图完成签到,获得积分10
1秒前
zyx关闭了zyx文献求助
1秒前
2秒前
阿飞完成签到,获得积分10
3秒前
风不言喻完成签到,获得积分10
4秒前
小鱼发布了新的文献求助10
4秒前
英勇大门发布了新的文献求助10
5秒前
6秒前
Astro完成签到,获得积分10
6秒前
7秒前
热情的乐荷完成签到,获得积分10
8秒前
迅速冬天完成签到,获得积分10
9秒前
啸西风完成签到,获得积分10
11秒前
ccdw发布了新的文献求助10
12秒前
李健应助英勇大门采纳,获得10
12秒前
13秒前
13秒前
YuZhang完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助大气颜演采纳,获得10
14秒前
坦率尔蝶完成签到 ,获得积分10
15秒前
15秒前
小鱼完成签到,获得积分10
15秒前
4444完成签到,获得积分10
15秒前
戒灵发布了新的文献求助10
16秒前
川木完成签到,获得积分10
16秒前
hajimi发布了新的文献求助10
17秒前
多一点完成签到,获得积分20
18秒前
肥鱼不会飞完成签到,获得积分10
19秒前
香草吧噗发布了新的文献求助10
20秒前
21秒前
TingtingGZ发布了新的文献求助50
21秒前
22秒前
meng发布了新的文献求助10
22秒前
戒灵完成签到,获得积分10
22秒前
今后应助熬夜的桃子采纳,获得10
24秒前
25秒前
甜甜亦巧完成签到,获得积分10
25秒前
25秒前
张飞飞飞飞飞应助吕忠义采纳,获得20
25秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891