已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FLITC: A Novel Federated Learning-Based Method for IoT Traffic Classification

计算机科学 服务质量 供应 交通分类 计算机网络 云计算 物联网 人工智能 应用层 机器学习 人工神经网络 分类器(UML) 分布式计算 计算机安全 软件部署 操作系统
作者
Mahmoud Abbasi,Amir Taherkordi,Amin Shahraki
标识
DOI:10.1109/smartcomp55677.2022.00055
摘要

Internet of Things (IoT) systems are rightly receiving considerable interest for many real-world applications, from in-body networks to satellite networks. Such a massive-scale system generates a considerable amount of traffic data, making IoT systems a distributed data source generator. For many reasons, such as the functionality of IoT applications and Quality of Service (QoS) provisioning, classifying these traffic data is of high importance. In the last few years, widespread interest has been expressed in applying Machine Learning (ML)-based techniques for Network Traffic Classification (NTC) tasks. However, the traditional centralized learning-based traffic classifiers pose serious challenges, especially in IoT networks. The centralized ML techniques call for collecting a large amount of data from various IoT devices, which in turn introduces data governance and privacy challenges. Furthermore, in the centralized ML, training data need to be transferred to the Cloud, which increases communication cost and latency. To address these problems, we propose Federated Learning (FL) Internet of Things (IoT) Traffic Classifier (FLITC)-a Federated Learning (FL)-based IoT traffic classification method which is based on the Multi-Layer Perception (MLP) neural network and holds the local data unimpaired on IoT devices by sending only the learned parameters to the aggregation server. Our experimental results show that the FLITC beats centralized learning in preserving the privacy of sensitive data and offers a better degree of accuracy at the cost of a longer training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助尤寄风采纳,获得10
1秒前
2秒前
ym发布了新的文献求助10
2秒前
愉快小小发布了新的文献求助10
3秒前
Akim应助ll采纳,获得10
3秒前
3秒前
4秒前
浮游应助冷傲迎梦采纳,获得10
6秒前
8秒前
9秒前
清爽饼干发布了新的文献求助10
9秒前
evilbatuu完成签到,获得积分10
10秒前
loong发布了新的文献求助10
11秒前
sssshhhaa完成签到,获得积分10
11秒前
12秒前
12秒前
jewel完成签到,获得积分10
12秒前
sally完成签到,获得积分20
14秒前
祝佳其完成签到 ,获得积分10
14秒前
菜青虫完成签到,获得积分10
15秒前
小蘑菇应助yhb采纳,获得10
17秒前
18秒前
19秒前
VDC应助ym采纳,获得30
19秒前
NexusExplorer应助jewel采纳,获得10
19秒前
科研通AI6应助GaPb氘壬采纳,获得10
20秒前
彼岸完成签到,获得积分10
20秒前
lcc应助twbsci采纳,获得10
20秒前
20秒前
23秒前
25秒前
温柔柜子发布了新的文献求助10
25秒前
鱼鱼鱼发布了新的文献求助10
25秒前
自渡完成签到 ,获得积分10
27秒前
28秒前
科研通AI6应助端庄的雪青采纳,获得10
30秒前
30秒前
鱼鱼鱼完成签到,获得积分10
30秒前
yhb发布了新的文献求助10
34秒前
九木德发布了新的文献求助10
35秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443502
求助须知:如何正确求助?哪些是违规求助? 4553396
关于积分的说明 14241800
捐赠科研通 4475069
什么是DOI,文献DOI怎么找? 2452248
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794