已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FLITC: A Novel Federated Learning-Based Method for IoT Traffic Classification

计算机科学 服务质量 供应 交通分类 计算机网络 云计算 物联网 人工智能 应用层 机器学习 人工神经网络 分类器(UML) 分布式计算 计算机安全 软件部署 操作系统
作者
Mahmoud Abbasi,Amir Taherkordi,Amin Shahraki
标识
DOI:10.1109/smartcomp55677.2022.00055
摘要

Internet of Things (IoT) systems are rightly receiving considerable interest for many real-world applications, from in-body networks to satellite networks. Such a massive-scale system generates a considerable amount of traffic data, making IoT systems a distributed data source generator. For many reasons, such as the functionality of IoT applications and Quality of Service (QoS) provisioning, classifying these traffic data is of high importance. In the last few years, widespread interest has been expressed in applying Machine Learning (ML)-based techniques for Network Traffic Classification (NTC) tasks. However, the traditional centralized learning-based traffic classifiers pose serious challenges, especially in IoT networks. The centralized ML techniques call for collecting a large amount of data from various IoT devices, which in turn introduces data governance and privacy challenges. Furthermore, in the centralized ML, training data need to be transferred to the Cloud, which increases communication cost and latency. To address these problems, we propose Federated Learning (FL) Internet of Things (IoT) Traffic Classifier (FLITC)-a Federated Learning (FL)-based IoT traffic classification method which is based on the Multi-Layer Perception (MLP) neural network and holds the local data unimpaired on IoT devices by sending only the learned parameters to the aggregation server. Our experimental results show that the FLITC beats centralized learning in preserving the privacy of sensitive data and offers a better degree of accuracy at the cost of a longer training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助cece采纳,获得10
1秒前
wangzian完成签到 ,获得积分10
4秒前
冷艳的语雪完成签到 ,获得积分10
5秒前
花三万俩完成签到,获得积分10
6秒前
罗文权发布了新的文献求助20
6秒前
爆米花应助强健的迎波采纳,获得30
7秒前
7秒前
Lin发布了新的文献求助10
11秒前
2223完成签到,获得积分10
11秒前
橘猫123456完成签到,获得积分10
11秒前
丘比特应助熊噗噗采纳,获得10
11秒前
16秒前
玛卡巴卡完成签到,获得积分10
16秒前
17秒前
Hello应助王威采纳,获得10
17秒前
cen完成签到,获得积分10
17秒前
Lin完成签到,获得积分10
18秒前
鱼乐乐完成签到,获得积分10
19秒前
cece发布了新的文献求助10
22秒前
23秒前
23秒前
熊噗噗完成签到,获得积分10
25秒前
duzhi完成签到 ,获得积分10
27秒前
27秒前
顾影完成签到 ,获得积分10
27秒前
28秒前
754发布了新的文献求助10
28秒前
28秒前
谦让太发布了新的文献求助10
29秒前
G1997完成签到 ,获得积分10
32秒前
王子娇完成签到 ,获得积分10
32秒前
xdx发布了新的文献求助10
33秒前
33秒前
画晴完成签到,获得积分10
33秒前
bunny发布了新的文献求助10
34秒前
王威发布了新的文献求助10
34秒前
36秒前
37秒前
QvQ完成签到,获得积分10
37秒前
liaojun完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469887
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337540
捐赠科研通 4499791
什么是DOI,文献DOI怎么找? 2465313
邀请新用户注册赠送积分活动 1453731
关于科研通互助平台的介绍 1428270