重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

FLITC: A Novel Federated Learning-Based Method for IoT Traffic Classification

计算机科学 服务质量 供应 交通分类 计算机网络 云计算 物联网 人工智能 应用层 机器学习 人工神经网络 分类器(UML) 分布式计算 计算机安全 软件部署 操作系统
作者
Mahmoud Abbasi,Amir Taherkordi,Amin Shahraki
标识
DOI:10.1109/smartcomp55677.2022.00055
摘要

Internet of Things (IoT) systems are rightly receiving considerable interest for many real-world applications, from in-body networks to satellite networks. Such a massive-scale system generates a considerable amount of traffic data, making IoT systems a distributed data source generator. For many reasons, such as the functionality of IoT applications and Quality of Service (QoS) provisioning, classifying these traffic data is of high importance. In the last few years, widespread interest has been expressed in applying Machine Learning (ML)-based techniques for Network Traffic Classification (NTC) tasks. However, the traditional centralized learning-based traffic classifiers pose serious challenges, especially in IoT networks. The centralized ML techniques call for collecting a large amount of data from various IoT devices, which in turn introduces data governance and privacy challenges. Furthermore, in the centralized ML, training data need to be transferred to the Cloud, which increases communication cost and latency. To address these problems, we propose Federated Learning (FL) Internet of Things (IoT) Traffic Classifier (FLITC)-a Federated Learning (FL)-based IoT traffic classification method which is based on the Multi-Layer Perception (MLP) neural network and holds the local data unimpaired on IoT devices by sending only the learned parameters to the aggregation server. Our experimental results show that the FLITC beats centralized learning in preserving the privacy of sensitive data and offers a better degree of accuracy at the cost of a longer training time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxfsx应助科研通管家采纳,获得10
刚刚
刚刚
李爱国应助伊酒采纳,获得10
1秒前
miuwu完成签到,获得积分10
1秒前
完美世界应助欧阳铭采纳,获得10
1秒前
jinsijia完成签到,获得积分10
3秒前
天真笑白发布了新的文献求助10
5秒前
大树完成签到 ,获得积分10
6秒前
唠叨的文龙完成签到,获得积分10
7秒前
7秒前
8秒前
稀饭完成签到,获得积分10
8秒前
10秒前
留胡子的沛蓝完成签到 ,获得积分10
11秒前
11秒前
12秒前
glory0510发布了新的文献求助10
12秒前
YYC关注了科研通微信公众号
12秒前
13秒前
14秒前
14秒前
天真笑白完成签到,获得积分10
15秒前
miuwu发布了新的文献求助10
15秒前
Ava应助SmileLin采纳,获得10
16秒前
散漫在野完成签到,获得积分10
16秒前
16秒前
ys6完成签到,获得积分10
16秒前
哈哈完成签到 ,获得积分10
16秒前
臭臭发布了新的文献求助10
16秒前
17秒前
科研通AI2S应助冷酷的依霜采纳,获得10
17秒前
orixero应助ICE采纳,获得10
18秒前
lilala完成签到,获得积分10
18秒前
18秒前
徐徐发布了新的文献求助10
19秒前
19秒前
朴素的虔发布了新的文献求助10
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
火星上凡霜完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737