Transition State Theory-Inspired Neural Network for Estimating the Viscosity of Deep Eutectic Solvents

粘度 人工神经网络 多层感知器 感知器 共晶体系 深共晶溶剂 一般化 计算机科学 近似误差 状态方程 热力学 人工智能 算法 材料科学 数学 物理 数学分析 合金 复合材料
作者
Liu-Ying Yu,Gao-Peng Ren,Xiao-Jing Hou,Ke-Jun Wu,Yuchen He
出处
期刊:ACS central science [American Chemical Society]
卷期号:8 (7): 983-995 被引量:10
标识
DOI:10.1021/acscentsci.2c00157
摘要

The lack of accurate methods for predicting the viscosity of solvent materials, especially those with complex interactions, remains unresolved. Deep eutectic solvents (DESs), an emerging class of green solvents, have a severe lack of viscosity data, resulting in their application still staying at the stage of random trial and error, and it is difficult for them to be implemented on an industrial scale. In this work, we demonstrate the successful prediction of the viscosity of DESs based on the transition state theory-inspired neural network (TSTiNet). The TSTiNet adopts multilayer perceptron (MLP) for the transition state theory-inspired equation (TSTiEq) parameters calculation and verification using the most comprehensive DESs viscosity data set to date. For the energy parameters of the TSTiEq, the constant assumption and the fast iteration with the help of MLP can allow TSTiNet to achieve the best performance (the average absolute relative deviation on the test set of 6.84% and R2 of 0.9805). Compared with the traditional machine learning methods, the TSTiNet has better generalization ability and dramatically reduces the maximum relative deviation of prediction under the constraints of the thermodynamic formulation. It requires only the structural information on DESs and is the most accurate and reliable model available for DESs viscosity prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
傲娇蓝血完成签到,获得积分10
1秒前
撒西不理关注了科研通微信公众号
3秒前
胡胡胡完成签到 ,获得积分10
6秒前
6秒前
科研小白完成签到,获得积分10
7秒前
Jasper应助冷酷的风华采纳,获得10
8秒前
zzz完成签到,获得积分10
8秒前
铁观音发布了新的文献求助10
10秒前
斯文败类应助玛卡巴卡采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
dinghaifeng应助科研通管家采纳,获得10
11秒前
温冰雪应助科研通管家采纳,获得10
11秒前
dinghaifeng应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得30
11秒前
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
Tourist应助科研通管家采纳,获得30
11秒前
木野狐发布了新的文献求助10
11秒前
ED应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
zyy6657完成签到,获得积分10
14秒前
鱼秋完成签到,获得积分10
14秒前
似水流年完成签到 ,获得积分10
14秒前
14秒前
眞_完成签到 ,获得积分10
15秒前
7eLo完成签到,获得积分10
15秒前
缓慢逍遥完成签到 ,获得积分10
16秒前
7eLo发布了新的文献求助10
18秒前
CodeCraft应助铁观音采纳,获得10
21秒前
思源应助闪闪的从彤采纳,获得10
23秒前
24秒前
步步完成签到 ,获得积分10
25秒前
xiangyiyi完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958051
求助须知:如何正确求助?哪些是违规求助? 3504213
关于积分的说明 11117431
捐赠科研通 3235582
什么是DOI,文献DOI怎么找? 1788318
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511