Conditional GANs based system for fibrosis detection and quantification in Hematoxylin and Eosin whole slide images

计算机科学 H&E染色 人工智能 数字化病理学 污渍 三色 分割 管道(软件) 病理 马森三色染色 深度学习 纤维化 模式识别(心理学) 计算机视觉 医学 染色 程序设计语言
作者
Ahmed M. Naglah,Fahmi Khalifa,Ayman El‐Baz,Dibson D. Gondim
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:81: 102537-102537 被引量:10
标识
DOI:10.1016/j.media.2022.102537
摘要

Assessing the degree of liver fibrosis is fundamental for the management of patients with chronic liver disease, in liver transplants procedures, and in general liver disease research. The fibrosis stage is best assessed by histopathologic evaluation, and Masson's Trichrome stain (MT) is the stain of choice for this task in many laboratories around the world. However, the most used stain in histopathology is Hematoxylin Eosin (HE) which is cheaper, has a faster turn-around time and is the primary stain routinely used for evaluation of liver specimens. In this paper, we propose a novel digital pathology system that accurately detects and quantifies the footprint of fibrous tissue in HE whole slide images (WSI). The proposed system produces virtual MT images from HE using a deep learning model that learns deep texture patterns associated with collagen fibers. The training pipeline is based on conditional generative adversarial networks (cGAN), which can achieve accurate pixel-level transformation. Our comprehensive training pipeline features an automatic WSI registration algorithm, which qualifies the HE/MT training slides for the cGAN model. Using liver specimens collected during liver transplantation procedures, we conducted a range of experiments to evaluate the detected footprint of selected anatomical features. Our evaluation includes both image similarity and semantic segmentation metrics. The proposed system achieved enhanced results in the experiments with significant improvement over the state-of-the-art CycleGAN learning style, and over direct prediction of fibrosis in HE without having the virtual MT step.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安玖完成签到,获得积分10
刚刚
dyh6802发布了新的文献求助10
1秒前
拉长的忆南完成签到,获得积分10
2秒前
镜哥完成签到,获得积分10
2秒前
garyaa完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
17完成签到,获得积分10
3秒前
今后应助冷静的毛豆采纳,获得20
3秒前
3秒前
小马哥36发布了新的文献求助10
3秒前
ttttttuu发布了新的文献求助10
3秒前
甜美的秋凌完成签到,获得积分10
4秒前
10发布了新的文献求助10
5秒前
高高完成签到 ,获得积分10
5秒前
AAAAAAAAAAA发布了新的文献求助10
5秒前
6秒前
wxaaaa完成签到,获得积分10
6秒前
李爱国应助dd采纳,获得10
7秒前
8秒前
Jasper应助感性的凉面采纳,获得10
9秒前
9秒前
10秒前
10秒前
11秒前
情怀应助顺顺采纳,获得10
11秒前
garyaa发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助奔奔采纳,获得10
11秒前
Orange应助Clean采纳,获得10
12秒前
Lucas应助ww采纳,获得10
12秒前
13秒前
ttttttuu完成签到,获得积分10
13秒前
14秒前
刘涵完成签到 ,获得积分10
14秒前
小马甲应助zhui采纳,获得10
14秒前
10完成签到,获得积分10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794