A Hierarchical Compliance-Based Contextual Policy Search for Robotic Manipulation Tasks With Multiple Objectives

强化学习 计算机科学 一般化 背景(考古学) 人工智能 弹道 任务(项目管理) 机器学习 工程类 数学 天文 生物 物理 数学分析 古生物学 系统工程
作者
Zhimin Hou,Wenhao Yang,Rui Chen,Pingfa Feng,Jing Xu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 5444-5455 被引量:8
标识
DOI:10.1109/tii.2022.3192435
摘要

Contextual policy search methods have demonstrated the potential to acquire robotic skill generalization on trajectory-shaping-based tasks. However, it is still challenging for robotic contact-rich manipulation tasks because contact force regulation, reference trajectory adaptation, and task generalization must be fulfilled simultaneously. To this end, a hierarchical compliance-based contextual policy search (HC-CPS) approach is proposed to learn the robotic compliant skills for force, motion, and task adaptation. Specifically, the parameterized impedance-conditioned action space is proposed for reinforcement learning lower-level policy to obtain the compliance for reference motion regulation and contact force control, while a linear Gaussian contextual policy is formulated as the higher-level policy to optimize the context-conditioned impedance parameters for task generalization; therefore, a family of contact-rich manipulation tasks with multiple objectives is achieved. Moreover, data efficiency is further improved by two aspects: first, a variation encoder-decoder model is proposed to estimate the underlying constraints of impedance parameters over the actions, leading to the mitigated extrapolation error for lower-level policy off-policy learning; second, a composite forward model is proposed to generate artificial trajectories and reduce the reward bias for higher-level contextual policy learning. The HC-CPS approach is validated by three simulated manipulation tasks and the real-world dual peg-in-hole assembly tasks with two kinds of objectives, and the results demonstrate the effectiveness of HC-CPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助li采纳,获得10
刚刚
1秒前
3秒前
Henvy完成签到,获得积分10
4秒前
ttldhbds完成签到,获得积分10
5秒前
JackCoding完成签到,获得积分10
5秒前
科研通AI5应助周周采纳,获得10
6秒前
7秒前
7秒前
11231发布了新的文献求助10
7秒前
Raintoo_发布了新的文献求助10
7秒前
Felice完成签到,获得积分10
9秒前
宇文无施完成签到,获得积分10
10秒前
JackCoding发布了新的文献求助30
10秒前
li发布了新的文献求助10
11秒前
搜集达人应助Maestro_S采纳,获得30
13秒前
Res完成签到,获得积分20
13秒前
吕凯良发布了新的文献求助10
14秒前
15秒前
16秒前
18秒前
19秒前
19秒前
李健应助周周采纳,获得30
20秒前
无辜忆寒发布了新的文献求助10
20秒前
tong发布了新的文献求助10
20秒前
Res发布了新的文献求助10
21秒前
浮游应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
22秒前
所所应助科研通管家采纳,获得10
22秒前
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
23秒前
浮游应助科研通管家采纳,获得10
23秒前
Tina应助科研通管家采纳,获得10
23秒前
changping应助科研通管家采纳,获得10
23秒前
小蘑菇应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得100
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5156169
求助须知:如何正确求助?哪些是违规求助? 4351736
关于积分的说明 13550023
捐赠科研通 4194853
什么是DOI,文献DOI怎么找? 2300694
邀请新用户注册赠送积分活动 1300671
关于科研通互助平台的介绍 1245726