A Hierarchical Compliance-Based Contextual Policy Search for Robotic Manipulation Tasks With Multiple Objectives

强化学习 计算机科学 一般化 背景(考古学) 人工智能 弹道 任务(项目管理) 机器学习 工程类 数学 数学分析 古生物学 物理 系统工程 天文 生物
作者
Zhimin Hou,Wenhao Yang,Rui Chen,Pingfa Feng,Jing Xu
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:19 (4): 5444-5455 被引量:6
标识
DOI:10.1109/tii.2022.3192435
摘要

Contextual policy search methods have demonstrated the potential to acquire robotic skill generalization on trajectory-shaping-based tasks. However, it is still challenging for robotic contact-rich manipulation tasks because contact force regulation, reference trajectory adaptation, and task generalization must be fulfilled simultaneously. To this end, a hierarchical compliance-based contextual policy search (HC-CPS) approach is proposed to learn the robotic compliant skills for force, motion, and task adaptation. Specifically, the parameterized impedance-conditioned action space is proposed for reinforcement learning lower-level policy to obtain the compliance for reference motion regulation and contact force control, while a linear Gaussian contextual policy is formulated as the higher-level policy to optimize the context-conditioned impedance parameters for task generalization; therefore, a family of contact-rich manipulation tasks with multiple objectives is achieved. Moreover, data efficiency is further improved by two aspects: first, a variation encoder-decoder model is proposed to estimate the underlying constraints of impedance parameters over the actions, leading to the mitigated extrapolation error for lower-level policy off-policy learning; second, a composite forward model is proposed to generate artificial trajectories and reduce the reward bias for higher-level contextual policy learning. The HC-CPS approach is validated by three simulated manipulation tasks and the real-world dual peg-in-hole assembly tasks with two kinds of objectives, and the results demonstrate the effectiveness of HC-CPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xg发布了新的文献求助10
2秒前
看看发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
Annie完成签到,获得积分10
4秒前
4秒前
通~发布了新的文献求助30
5秒前
5秒前
雨雾发布了新的文献求助10
6秒前
daiyapeng完成签到,获得积分10
6秒前
ivy应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
7秒前
36456657应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
Hello应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
NN应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
8秒前
36456657应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
NN应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
8秒前
shouyu29应助科研通管家采纳,获得10
8秒前
8秒前
顾闭月发布了新的文献求助10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794