An Emerging Fuzzy Feature Selection Method Using Composite Entropy-Based Uncertainty Measure and Data Distribution

数据挖掘 特征选择 熵(时间箭头) 模糊逻辑 计算机科学 人工智能 粗集 模糊集 机器学习 联合熵 模式识别(心理学) 数学 最大熵原理 数学优化 物理 量子力学
作者
Weihua Xu,Kehua Yuan,Wentao Li,Weiping Ding
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (1): 76-88 被引量:69
标识
DOI:10.1109/tetci.2022.3171784
摘要

Feature selection based on neighborhood rough set is a noteworthy step in dealing with numerical data. Information entropy, proven in many theoretical analysis and practical applications, is a compelling feature evaluation method for uncertainty information measures. Nonetheless, information entropy replaces probability with uncertainty measure to evaluate the average amount of information and ignores the decision distribution of data, especially in describing the uncertainty in imbalanced data. This paper discusses an emerging method for the feature selection in fuzzy data with imbalanced data by presenting a local composite entropy based on a neighborhood rough set. Based on the neighborhood rough set model, we discuss a similar relation to describe the relationship between different objects in unbalanced fuzzy data. In this process, to fully consider the distribution characteristics of unbalanced data, we construct a local composite entropy for handling the fuzzy decision systems with uncertainty and decision distribution, which is proven to be monotonic. Moreover, to improve the selection efficiency, a local heuristic forward greedy selection algorithm based on the local composite measure is designed to select the optimal feature subset. Finally, experimental results on twelve public datasets demonstrate that our method has better classification performance than some state-of-the-art feature selection methods in fuzzy data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
火星上听寒完成签到,获得积分10
1秒前
大模型应助飞快的以冬采纳,获得10
1秒前
一眼之间完成签到 ,获得积分10
2秒前
meng发布了新的文献求助10
2秒前
upsoar发布了新的文献求助10
3秒前
hqq发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助小胖酱采纳,获得10
3秒前
大个应助123采纳,获得10
4秒前
山河故人921完成签到,获得积分10
5秒前
知许解夏应助调皮时光采纳,获得10
5秒前
5秒前
yihuifa发布了新的文献求助10
7秒前
乔修亚完成签到,获得积分10
7秒前
7秒前
隐形曼青应助wuwu采纳,获得10
7秒前
善学以致用应助柊巳采纳,获得10
8秒前
9秒前
打工人完成签到,获得积分10
10秒前
标致的小霸王完成签到,获得积分20
10秒前
11秒前
开朗向真完成签到,获得积分10
11秒前
11秒前
suqiongwu发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
糜轩完成签到,获得积分10
14秒前
xiax03发布了新的文献求助10
14秒前
等待花季烟雨愁完成签到,获得积分10
14秒前
Owen应助谭玲慧采纳,获得10
14秒前
呆萌的映易完成签到,获得积分20
15秒前
情怀应助鱼咬羊采纳,获得10
15秒前
15秒前
15秒前
15秒前
学术pig完成签到,获得积分10
15秒前
wang1343259150完成签到,获得积分10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961206
求助须知:如何正确求助?哪些是违规求助? 3507486
关于积分的说明 11136374
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790557
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186