An Emerging Fuzzy Feature Selection Method Using Composite Entropy-Based Uncertainty Measure and Data Distribution

数据挖掘 特征选择 熵(时间箭头) 模糊逻辑 计算机科学 人工智能 粗集 模糊集 机器学习 联合熵 模式识别(心理学) 数学 最大熵原理 数学优化 物理 量子力学
作者
Weihua Xu,Kehua Yuan,Wentao Li,Weiping Ding
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (1): 76-88 被引量:69
标识
DOI:10.1109/tetci.2022.3171784
摘要

Feature selection based on neighborhood rough set is a noteworthy step in dealing with numerical data. Information entropy, proven in many theoretical analysis and practical applications, is a compelling feature evaluation method for uncertainty information measures. Nonetheless, information entropy replaces probability with uncertainty measure to evaluate the average amount of information and ignores the decision distribution of data, especially in describing the uncertainty in imbalanced data. This paper discusses an emerging method for the feature selection in fuzzy data with imbalanced data by presenting a local composite entropy based on a neighborhood rough set. Based on the neighborhood rough set model, we discuss a similar relation to describe the relationship between different objects in unbalanced fuzzy data. In this process, to fully consider the distribution characteristics of unbalanced data, we construct a local composite entropy for handling the fuzzy decision systems with uncertainty and decision distribution, which is proven to be monotonic. Moreover, to improve the selection efficiency, a local heuristic forward greedy selection algorithm based on the local composite measure is designed to select the optimal feature subset. Finally, experimental results on twelve public datasets demonstrate that our method has better classification performance than some state-of-the-art feature selection methods in fuzzy data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊风发布了新的文献求助10
1秒前
无辜的井发布了新的文献求助30
3秒前
5秒前
9秒前
9秒前
11秒前
宅多点应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
宅多点应助科研通管家采纳,获得10
11秒前
natmed应助科研通管家采纳,获得10
12秒前
12秒前
打打应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
草东树应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
沈达完成签到,获得积分10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
warithy应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
shhoing应助科研通管家采纳,获得10
12秒前
蓝天应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
小木没有烦恼完成签到 ,获得积分10
13秒前
无辜的井完成签到,获得积分10
14秒前
qayqay003发布了新的文献求助10
14秒前
沈达发布了新的文献求助10
15秒前
mm完成签到,获得积分10
18秒前
18秒前
22秒前
弗洛伊德完成签到 ,获得积分10
28秒前
精明芷巧完成签到 ,获得积分10
28秒前
斯文败类应助wdchenaic采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645517
关于积分的说明 14675412
捐赠科研通 4586664
什么是DOI,文献DOI怎么找? 2516501
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951