ParaUDA: Invariant Feature Learning With Auxiliary Synthetic Samples for Unsupervised Domain Adaptation

人工智能 计算机科学 特征学习 特征(语言学) 学习迁移 模式识别(心理学) 像素 不变(物理) 领域(数学分析) 域适应 目标检测 计算机视觉 视觉对象识别的认知神经科学 光学(聚焦) 特征提取 数学 分类器(UML) 哲学 数学分析 物理 光学 语言学 数学物理
作者
Wenwen Zhang,Jiangong Wang,Yutong Wang,Fei–Yue Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 20217-20229 被引量:6
标识
DOI:10.1109/tits.2022.3176397
摘要

Recognizing and locating objects by algorithms are essential and challenging issues for Intelligent Transportation Systems. However, the increasing demand for much labeled data hinders the further application of deep learning-based object detection. One of the optimal solutions is to train the target model with an existing dataset and then adapt it to new scenes, namely Unsupervised Domain Adaptation (UDA). However, most of existing methods at the pixel level mainly focus on adapting the model from source domain to target domain and ignore the essence of UDA to learn domain-invariant feature learning. Meanwhile, almost all methods at the feature level ignore to make conditional distributions matched for UDA while conducting feature alignment between source and target domain. Considering these problems, this paper proposes the ParaUDA, a novel framework of learning invariant representations for UDA in two aspects: pixel level and feature level. At the pixel level, we adopt CycleGAN to conduct domain transfer and convert the problem of original unsupervised domain adaptation to supervised domain adaptation. At the feature level, we adopt an adversarial adaption model to learn domain-invariant representation by aligning the distributions of domains between different image pairs with same mixture distributions. We evaluate our proposed framework in different scenes, from synthetic scenes to real scenes, from normal weather to challenging weather, and from scenes across cameras. The results of all the above experiments show that ParaUDA is effective and robust for adapting object detection models from source scenes to target scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渝州人完成签到,获得积分10
刚刚
kirito发布了新的文献求助10
1秒前
厄页石页完成签到,获得积分10
2秒前
正常发布了新的文献求助10
2秒前
英俊的胜完成签到,获得积分10
3秒前
3秒前
柚子完成签到 ,获得积分10
4秒前
杨雪妮发布了新的文献求助10
4秒前
嗒嗒完成签到,获得积分10
4秒前
幸福时光完成签到,获得积分10
4秒前
iNk应助小底采纳,获得10
4秒前
SciGPT应助一个刚刚采纳,获得10
6秒前
yuanquaner发布了新的文献求助10
6秒前
可爱的函函应助biomichael采纳,获得10
7秒前
清爽的诗槐完成签到,获得积分10
7秒前
ljxx发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
10秒前
xinxinqi完成签到 ,获得积分10
10秒前
青石完成签到,获得积分20
11秒前
背后的雨竹完成签到,获得积分10
11秒前
那地方完成签到,获得积分10
12秒前
XIEMIN发布了新的文献求助10
12秒前
12秒前
WW完成签到,获得积分10
12秒前
13秒前
正常完成签到,获得积分20
13秒前
boatmann发布了新的文献求助10
13秒前
HHH完成签到 ,获得积分10
13秒前
14秒前
denz完成签到,获得积分10
14秒前
冷酷的啤酒完成签到,获得积分10
15秒前
巴拉巴拉发布了新的文献求助10
15秒前
15秒前
cns完成签到,获得积分10
15秒前
15秒前
H-China发布了新的文献求助10
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950291
求助须知:如何正确求助?哪些是违规求助? 3495773
关于积分的说明 11078786
捐赠科研通 3226217
什么是DOI,文献DOI怎么找? 1783653
邀请新用户注册赠送积分活动 867728
科研通“疑难数据库(出版商)”最低求助积分说明 800904