合成孔径雷达
遥感
图像融合
图像分辨率
均方误差
传感器融合
科恩卡帕
计算机科学
地质学
人工智能
图像(数学)
数学
统计
机器学习
作者
Qihang Liu,Shiqiang Zhang,Ninglian Wang,Yisen Ming,Chang Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:60: 1-12
被引量:6
标识
DOI:10.1109/tgrs.2022.3187154
摘要
River water extent is critical for understanding river discharge or its hydrological conditions. Although numerous methods have been proposed to map river water from either optical or synthetic aperture radar (SAR) remotely sensed images, uncertainties still exist broadly. In this study, we developed an image fusion method that integrates Landsat-8, Sentinel-1 and Sentinel-2 images simultaneously for river water mapping with two major steps. Firstly, a posterior probability support vector machine model was adopted to generate water probability maps from each individual image; and second, a Multi-dimensional Weighted Fusion Method (MDWFM) was developed to fuse these probability maps. Four reaches with different characteristics were selected as case study sites. High resolution aerial images were acquired and used as the reference to evaluate our results. We found the fusion process not only improves the quality of river water mapping, but also excludes the cloud interference. The fused river water maps become more reliable after the conflicts from difference images being solved by the proposed MDWFM method that contains a proportional conflict redistribution rule. The weighted root mean square difference was reduced to 0.066, and the Area Under the ROC curve reached up to 0.984. The Critical Success Index, Kappa Coefficient, and F-measure reached up to 0.810, 0.836 and 0.895, respectively. These stable and accurate river extent mapping results obtained through fusing multiple images with high spatial resolution (10 m) and short revisit interval (0.4~4.4 days) are of great significance for enriching the data and methodology of hydrological studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI