Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method

合成孔径雷达 遥感 图像融合 图像分辨率 均方误差 传感器融合 科恩卡帕 计算机科学 地质学 人工智能 图像(数学) 数学 统计 机器学习
作者
Qihang Liu,Shiqiang Zhang,Ninglian Wang,Yisen Ming,Chang Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:6
标识
DOI:10.1109/tgrs.2022.3187154
摘要

River water extent is critical for understanding river discharge or its hydrological conditions. Although numerous methods have been proposed to map river water from either optical or synthetic aperture radar (SAR) remotely sensed images, uncertainties still exist broadly. In this study, we developed an image fusion method that integrates Landsat-8, Sentinel-1 and Sentinel-2 images simultaneously for river water mapping with two major steps. Firstly, a posterior probability support vector machine model was adopted to generate water probability maps from each individual image; and second, a Multi-dimensional Weighted Fusion Method (MDWFM) was developed to fuse these probability maps. Four reaches with different characteristics were selected as case study sites. High resolution aerial images were acquired and used as the reference to evaluate our results. We found the fusion process not only improves the quality of river water mapping, but also excludes the cloud interference. The fused river water maps become more reliable after the conflicts from difference images being solved by the proposed MDWFM method that contains a proportional conflict redistribution rule. The weighted root mean square difference was reduced to 0.066, and the Area Under the ROC curve reached up to 0.984. The Critical Success Index, Kappa Coefficient, and F-measure reached up to 0.810, 0.836 and 0.895, respectively. These stable and accurate river extent mapping results obtained through fusing multiple images with high spatial resolution (10 m) and short revisit interval (0.4~4.4 days) are of great significance for enriching the data and methodology of hydrological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Herisland采纳,获得10
刚刚
笨笨小刺猬完成签到,获得积分10
2秒前
2秒前
科研小达人完成签到,获得积分10
5秒前
追寻凌青完成签到,获得积分10
7秒前
渡劫完成签到,获得积分10
8秒前
丫丫完成签到 ,获得积分10
8秒前
lxy发布了新的文献求助10
9秒前
bono完成签到 ,获得积分10
12秒前
DentistRui完成签到,获得积分10
12秒前
14秒前
laber应助忧伤的步美采纳,获得50
17秒前
淡淡月饼发布了新的文献求助20
18秒前
茶茶应助虞无声采纳,获得50
18秒前
大橙子发布了新的文献求助10
20秒前
wangnn完成签到,获得积分10
21秒前
xzz完成签到,获得积分10
23秒前
阿绿发布了新的文献求助10
27秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
manman完成签到 ,获得积分20
31秒前
太清完成签到,获得积分10
35秒前
山雀完成签到,获得积分10
37秒前
伊一完成签到,获得积分10
39秒前
哭泣笑柳发布了新的文献求助10
45秒前
琳琅发布了新的文献求助10
50秒前
xue完成签到 ,获得积分10
51秒前
liars完成签到 ,获得积分10
51秒前
搞怪人雄完成签到,获得积分10
54秒前
落后的夜阑完成签到,获得积分10
54秒前
大橙子发布了新的文献求助10
57秒前
彪行天下完成签到,获得积分10
1分钟前
danli完成签到 ,获得积分10
1分钟前
guangyu完成签到,获得积分10
1分钟前
学术老6完成签到,获得积分10
1分钟前
c123完成签到 ,获得积分10
1分钟前
恐怖稽器人完成签到,获得积分10
1分钟前
WXR完成签到,获得积分10
1分钟前
科研小白完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022