Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method

合成孔径雷达 遥感 图像融合 图像分辨率 均方误差 传感器融合 科恩卡帕 计算机科学 地质学 人工智能 图像(数学) 数学 统计 机器学习
作者
Qihang Liu,Shiqiang Zhang,Ninglian Wang,Yisen Ming,Chang Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:6
标识
DOI:10.1109/tgrs.2022.3187154
摘要

River water extent is critical for understanding river discharge or its hydrological conditions. Although numerous methods have been proposed to map river water from either optical or synthetic aperture radar (SAR) remotely sensed images, uncertainties still exist broadly. In this study, we developed an image fusion method that integrates Landsat-8, Sentinel-1 and Sentinel-2 images simultaneously for river water mapping with two major steps. Firstly, a posterior probability support vector machine model was adopted to generate water probability maps from each individual image; and second, a Multi-dimensional Weighted Fusion Method (MDWFM) was developed to fuse these probability maps. Four reaches with different characteristics were selected as case study sites. High resolution aerial images were acquired and used as the reference to evaluate our results. We found the fusion process not only improves the quality of river water mapping, but also excludes the cloud interference. The fused river water maps become more reliable after the conflicts from difference images being solved by the proposed MDWFM method that contains a proportional conflict redistribution rule. The weighted root mean square difference was reduced to 0.066, and the Area Under the ROC curve reached up to 0.984. The Critical Success Index, Kappa Coefficient, and F-measure reached up to 0.810, 0.836 and 0.895, respectively. These stable and accurate river extent mapping results obtained through fusing multiple images with high spatial resolution (10 m) and short revisit interval (0.4~4.4 days) are of great significance for enriching the data and methodology of hydrological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
7秒前
李欣宇完成签到,获得积分20
7秒前
7秒前
gralish发布了新的文献求助10
7秒前
8秒前
8秒前
12秒前
12秒前
12秒前
FashionBoy应助土豪的飞荷采纳,获得10
16秒前
17秒前
ruby完成签到,获得积分10
17秒前
18秒前
coconut完成签到,获得积分10
18秒前
景初柔发布了新的文献求助10
19秒前
迷惘墨香完成签到 ,获得积分10
19秒前
Ava应助Wav采纳,获得10
20秒前
李欣宇发布了新的文献求助10
24秒前
等待日记本完成签到 ,获得积分10
25秒前
pcx完成签到,获得积分10
26秒前
26秒前
温婉的乞完成签到,获得积分10
27秒前
黑猫狗发布了新的文献求助10
27秒前
gralish关注了科研通微信公众号
28秒前
Alicia完成签到 ,获得积分10
29秒前
32秒前
jbear发布了新的文献求助10
32秒前
可爱的函函应助weisuonan101采纳,获得10
32秒前
33秒前
第十航空军完成签到,获得积分10
34秒前
35秒前
汉堡包应助哲寒采纳,获得10
35秒前
36秒前
mmol发布了新的文献求助10
37秒前
37秒前
张先森完成签到,获得积分10
40秒前
40秒前
梅啦啦完成签到 ,获得积分10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134930
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774244
捐赠科研通 2441682
什么是DOI,文献DOI怎么找? 1298076
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825