Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method

合成孔径雷达 遥感 图像融合 图像分辨率 均方误差 传感器融合 科恩卡帕 计算机科学 地质学 人工智能 图像(数学) 数学 统计 机器学习
作者
Qihang Liu,Shiqiang Zhang,Ninglian Wang,Yisen Ming,Chang Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:6
标识
DOI:10.1109/tgrs.2022.3187154
摘要

River water extent is critical for understanding river discharge or its hydrological conditions. Although numerous methods have been proposed to map river water from either optical or synthetic aperture radar (SAR) remotely sensed images, uncertainties still exist broadly. In this study, we developed an image fusion method that integrates Landsat-8, Sentinel-1 and Sentinel-2 images simultaneously for river water mapping with two major steps. Firstly, a posterior probability support vector machine model was adopted to generate water probability maps from each individual image; and second, a Multi-dimensional Weighted Fusion Method (MDWFM) was developed to fuse these probability maps. Four reaches with different characteristics were selected as case study sites. High resolution aerial images were acquired and used as the reference to evaluate our results. We found the fusion process not only improves the quality of river water mapping, but also excludes the cloud interference. The fused river water maps become more reliable after the conflicts from difference images being solved by the proposed MDWFM method that contains a proportional conflict redistribution rule. The weighted root mean square difference was reduced to 0.066, and the Area Under the ROC curve reached up to 0.984. The Critical Success Index, Kappa Coefficient, and F-measure reached up to 0.810, 0.836 and 0.895, respectively. These stable and accurate river extent mapping results obtained through fusing multiple images with high spatial resolution (10 m) and short revisit interval (0.4~4.4 days) are of great significance for enriching the data and methodology of hydrological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜羊羊完成签到,获得积分10
2秒前
2秒前
4秒前
离希夷完成签到,获得积分10
5秒前
星辰大海应助ZM采纳,获得10
5秒前
Qq完成签到 ,获得积分10
6秒前
Light_dreamer探索者完成签到 ,获得积分10
8秒前
林霖完成签到 ,获得积分10
11秒前
星辰大海应助坚定路人采纳,获得10
11秒前
ZM完成签到,获得积分10
12秒前
饭胖胖完成签到,获得积分10
12秒前
乌龙茶干完成签到,获得积分10
12秒前
13秒前
深情安青应助苦呀采纳,获得10
13秒前
健壮的尔烟完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
NexusExplorer应助科研通管家采纳,获得30
17秒前
严逍遥应助科研通管家采纳,获得10
17秒前
选择五个错四个关注了科研通微信公众号
17秒前
Owen应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
桐桐应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得10
18秒前
严逍遥应助科研通管家采纳,获得50
18秒前
ZM发布了新的文献求助10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
JamesPei应助ahq采纳,获得10
19秒前
哈基米德应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
19秒前
栗子应助科研通管家采纳,获得20
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228