Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method

合成孔径雷达 遥感 图像融合 图像分辨率 均方误差 传感器融合 科恩卡帕 计算机科学 地质学 人工智能 图像(数学) 数学 统计 机器学习
作者
Qihang Liu,Shiqiang Zhang,Ninglian Wang,Yisen Ming,Chang Huang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-12 被引量:6
标识
DOI:10.1109/tgrs.2022.3187154
摘要

River water extent is critical for understanding river discharge or its hydrological conditions. Although numerous methods have been proposed to map river water from either optical or synthetic aperture radar (SAR) remotely sensed images, uncertainties still exist broadly. In this study, we developed an image fusion method that integrates Landsat-8, Sentinel-1 and Sentinel-2 images simultaneously for river water mapping with two major steps. Firstly, a posterior probability support vector machine model was adopted to generate water probability maps from each individual image; and second, a Multi-dimensional Weighted Fusion Method (MDWFM) was developed to fuse these probability maps. Four reaches with different characteristics were selected as case study sites. High resolution aerial images were acquired and used as the reference to evaluate our results. We found the fusion process not only improves the quality of river water mapping, but also excludes the cloud interference. The fused river water maps become more reliable after the conflicts from difference images being solved by the proposed MDWFM method that contains a proportional conflict redistribution rule. The weighted root mean square difference was reduced to 0.066, and the Area Under the ROC curve reached up to 0.984. The Critical Success Index, Kappa Coefficient, and F-measure reached up to 0.810, 0.836 and 0.895, respectively. These stable and accurate river extent mapping results obtained through fusing multiple images with high spatial resolution (10 m) and short revisit interval (0.4~4.4 days) are of great significance for enriching the data and methodology of hydrological studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助blusky采纳,获得10
刚刚
DD完成签到,获得积分10
1秒前
2秒前
2秒前
4秒前
冷傲的道罡完成签到,获得积分10
4秒前
任性的皮皮虾完成签到,获得积分10
5秒前
5秒前
5秒前
李爱国应助JacksonHe采纳,获得10
6秒前
美丽访云完成签到,获得积分10
6秒前
科目三应助想毕业的gy采纳,获得10
6秒前
海东来给凩飒的求助进行了留言
6秒前
8秒前
大白完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助30
8秒前
9秒前
10秒前
跑在颖发布了新的文献求助10
10秒前
10秒前
bingbing发布了新的文献求助10
12秒前
迟迟发布了新的文献求助10
13秒前
13秒前
will完成签到 ,获得积分10
14秒前
爆米花应助nyfz2002采纳,获得10
14秒前
寒冷的忆灵完成签到,获得积分10
14秒前
14秒前
111完成签到,获得积分10
14秒前
火星上的若颜完成签到,获得积分10
15秒前
star完成签到,获得积分10
15秒前
16秒前
宇宙超级无敌小毛驴完成签到 ,获得积分20
17秒前
想喝奶茶发布了新的文献求助10
18秒前
顾矜应助怪味豆采纳,获得10
18秒前
19秒前
23秒前
cheng完成签到,获得积分10
23秒前
李健的小迷弟应助一二一采纳,获得10
23秒前
研友_VZG7GZ应助高大的网络采纳,获得10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969884
求助须知:如何正确求助?哪些是违规求助? 3514604
关于积分的说明 11174901
捐赠科研通 3249928
什么是DOI,文献DOI怎么找? 1795149
邀请新用户注册赠送积分活动 875599
科研通“疑难数据库(出版商)”最低求助积分说明 804891