Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy

光伏系统 学习迁移 计算机科学 人工神经网络 人工智能 深度学习 网格 特征(语言学) 机器学习 工程类 语言学 哲学 电气工程 几何学 数学
作者
Yugui Tang,Kuo Yang,Shujing Zhang,Zhen Zhang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:162: 112473-112473 被引量:65
标识
DOI:10.1016/j.rser.2022.112473
摘要

Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
123发布了新的文献求助10
2秒前
受伤哈密瓜完成签到 ,获得积分10
2秒前
3秒前
微笑带师兄给微笑带师兄的求助进行了留言
4秒前
心想事陈同学完成签到,获得积分10
4秒前
九星关注了科研通微信公众号
5秒前
萧水白应助Charlie采纳,获得10
7秒前
喝酒的二胖完成签到,获得积分10
7秒前
丘比特应助求文献采纳,获得10
10秒前
11秒前
11秒前
mumu完成签到,获得积分10
12秒前
13秒前
dll发布了新的文献求助50
13秒前
悦耳的真完成签到,获得积分10
13秒前
欣喜的伟泽完成签到,获得积分10
15秒前
hu完成签到,获得积分10
16秒前
16秒前
君君完成签到,获得积分10
16秒前
可爱的函函应助fuerfuer采纳,获得30
17秒前
18秒前
18秒前
19秒前
一口一个栗子应助云殳采纳,获得10
20秒前
材化小将军完成签到,获得积分10
20秒前
彭于晏应助zzz采纳,获得10
22秒前
jianwu47完成签到,获得积分10
22秒前
欢呼的友容完成签到,获得积分20
23秒前
24秒前
dachengzi发布了新的文献求助10
25秒前
橘橘橘子皮完成签到 ,获得积分10
26秒前
27秒前
28秒前
Linica发布了新的文献求助10
29秒前
帕克发布了新的文献求助10
30秒前
31秒前
力量发布了新的文献求助30
32秒前
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258135
求助须知:如何正确求助?哪些是违规求助? 2899933
关于积分的说明 8308256
捐赠科研通 2569175
什么是DOI,文献DOI怎么找? 1395555
科研通“疑难数据库(出版商)”最低求助积分说明 653117
邀请新用户注册赠送积分活动 630990