Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy

光伏系统 学习迁移 计算机科学 人工神经网络 人工智能 深度学习 网格 特征(语言学) 机器学习 工程类 语言学 哲学 电气工程 几何学 数学
作者
Yugui Tang,Kuo Yang,Shujing Zhang,Zhen Zhang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:162: 112473-112473 被引量:119
标识
DOI:10.1016/j.rser.2022.112473
摘要

Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放青旋应助unknown采纳,获得10
1秒前
2秒前
大力的远望完成签到 ,获得积分10
4秒前
adamchris应助louise采纳,获得30
5秒前
叶成会发布了新的文献求助10
6秒前
英俊的铭应助囡囡采纳,获得30
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
周老师完成签到 ,获得积分10
9秒前
你好完成签到 ,获得积分10
9秒前
FashionBoy应助denghn采纳,获得10
12秒前
怡然剑成完成签到 ,获得积分10
12秒前
残剑月发布了新的文献求助30
14秒前
故事细腻完成签到 ,获得积分10
14秒前
15秒前
小于爱科研完成签到,获得积分10
15秒前
Adzuki0812完成签到,获得积分10
15秒前
Lawyer完成签到 ,获得积分10
17秒前
harlind发布了新的文献求助10
19秒前
鳗鱼匕完成签到,获得积分10
19秒前
Psychexin完成签到,获得积分10
19秒前
Pauline完成签到 ,获得积分10
20秒前
美丽心情完成签到,获得积分10
21秒前
LL完成签到,获得积分10
22秒前
dy完成签到,获得积分10
23秒前
wangpinyl完成签到,获得积分10
23秒前
dzy完成签到,获得积分10
25秒前
无辜茗完成签到 ,获得积分10
26秒前
整齐百褶裙完成签到 ,获得积分10
26秒前
英姑应助jovrtic采纳,获得10
27秒前
SerCheung完成签到,获得积分10
29秒前
性感母蟑螂完成签到 ,获得积分10
29秒前
yundong完成签到,获得积分10
30秒前
30秒前
三十完成签到 ,获得积分10
30秒前
不安的米老鼠完成签到,获得积分10
32秒前
迈克老狼完成签到 ,获得积分10
34秒前
34秒前
欧阳完成签到,获得积分10
34秒前
koala发布了新的文献求助30
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603540
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854271
捐赠科研通 4693471
什么是DOI,文献DOI怎么找? 2540831
邀请新用户注册赠送积分活动 1507052
关于科研通互助平台的介绍 1471806