Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy

光伏系统 学习迁移 计算机科学 人工神经网络 人工智能 深度学习 网格 特征(语言学) 机器学习 工程类 语言学 哲学 电气工程 几何学 数学
作者
Yugui Tang,Kuo Yang,Shujing Zhang,Zhen Zhang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:162: 112473-112473 被引量:65
标识
DOI:10.1016/j.rser.2022.112473
摘要

Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ED应助是赤赤呀采纳,获得10
刚刚
1秒前
2秒前
魔鬼水果烤辣椒完成签到,获得积分10
2秒前
2秒前
慕青应助章鱼哥采纳,获得10
2秒前
lfjh完成签到,获得积分10
3秒前
CAOHOU应助00采纳,获得10
4秒前
阿欣完成签到,获得积分20
5秒前
5秒前
充电宝应助淡蓝蓝蓝采纳,获得10
6秒前
djiwisksk66应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
YamDaamCaa应助科研通管家采纳,获得30
6秒前
Akim应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
YamDaamCaa应助科研通管家采纳,获得30
6秒前
orixero应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
思源应助科研通管家采纳,获得10
7秒前
foceman发布了新的文献求助10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
CAOHOU应助黑黑黑采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得20
7秒前
sisthan发布了新的文献求助10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Water应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126