Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy

光伏系统 学习迁移 计算机科学 人工神经网络 人工智能 深度学习 网格 特征(语言学) 机器学习 工程类 语言学 哲学 电气工程 几何学 数学
作者
Yugui Tang,Kuo Yang,Shujing Zhang,Zhen Zhang
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:162: 112473-112473 被引量:119
标识
DOI:10.1016/j.rser.2022.112473
摘要

Accurate forecasting of photovoltaic power is essential in the integration, operation, and scheduling of hybrid grid systems. In particular, modeling for newly built photovoltaic sites is restricted by insufficient data and training burden. In this study, a novel hybrid photovoltaic power forecasting model assisted with a transfer learning strategy is proposed. The hybrid model, named the attention-dilate convolution neural network-bidirectional long short-term memory network, consists of three steps. Step 1 - Input reconstruction: the historical power and meteorological factors are reconstructed as new inputs based on their relevance to the forecast by introducing a long short-term memory-based attention mechanism; Step 2 - Feature extraction: a hybrid structure is applied to extract spatial and temporal features from new inputs in parallel; Step 3 - Feature mapping: the extracted features are mapped into the forecasted photovoltaic output. Furthermore, to address the modeling for new sites, a transfer learning strategy that fine-tunes the pre-trained model is proposed in this work. The structure by step-wise division allows fine-tuning to be applied to the necessary parts rather than the entire model. Subsequently, the data from the actual photovoltaic system was acquired to validate the proposed model and transfer learning strategy. The proposed model showed significantly superior performance than the other models in the tests, and the parameter transferring not only makes up for the data shortage but also effectively accelerates the model training. With the transfer learning strategy, the maximum improvement in accuracy and training efficiency reached 69.51% and 71.42%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zz完成签到,获得积分10
1秒前
Dddd发布了新的文献求助10
2秒前
深情安青应助咕咕嘎嘎采纳,获得10
2秒前
柚子应助seven采纳,获得20
2秒前
wanci应助小张同学采纳,获得10
2秒前
3秒前
3秒前
文森特的向日葵完成签到,获得积分10
3秒前
5秒前
CipherSage应助Smf采纳,获得10
6秒前
文闵发布了新的文献求助20
6秒前
万能图书馆应助Arrow采纳,获得10
6秒前
熹林向日葵完成签到,获得积分10
6秒前
小二郎应助顾月采纳,获得10
6秒前
科研通AI6应助泠泠月上采纳,获得10
7秒前
tguczf完成签到,获得积分10
8秒前
小鱼儿完成签到 ,获得积分10
8秒前
华仔应助成就忆秋采纳,获得30
10秒前
zzzdx发布了新的文献求助10
10秒前
科研通AI6应助鳗鱼道天采纳,获得10
10秒前
10秒前
Nicole完成签到,获得积分10
11秒前
白衣轻叹发布了新的文献求助10
11秒前
11秒前
田様应助许墨的小蝴蝶采纳,获得10
12秒前
王书兰发布了新的文献求助10
12秒前
Anthocyanidin完成签到,获得积分10
13秒前
米龙完成签到,获得积分10
13秒前
天天快乐应助ENIX采纳,获得10
13秒前
大门神完成签到,获得积分10
14秒前
宁不言完成签到,获得积分10
15秒前
我是老大应助GIANTim采纳,获得20
15秒前
16秒前
16秒前
16秒前
17秒前
17秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5354650
求助须知:如何正确求助?哪些是违规求助? 4486721
关于积分的说明 13967578
捐赠科研通 4387283
什么是DOI,文献DOI怎么找? 2410289
邀请新用户注册赠送积分活动 1402711
关于科研通互助平台的介绍 1376487