Automatic Coronary Artery Segmentation of CCTA Images With an Efficient Feature-Fusion-and-Rectification 3D-UNet

分割 计算机科学 人工智能 卷积神经网络 特征(语言学) 模式识别(心理学) 计算机视觉 块(置换群论) 数学 几何学 语言学 哲学
作者
Along Song,Lisong Xu,Lu Wang,Xin‐She Yang,Bo Xu,Bin Wang,Benqiang Yang,Stephen E. Greenwald
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (8): 4044-4055 被引量:10
标识
DOI:10.1109/jbhi.2022.3169425
摘要

Automatic coronary artery segmentation is of great value in diagnosing coronary disease. In this paper, we propose an automatic coronary artery segmentation method for coronary computerized tomography angiography (CCTA) images based on a deep convolutional neural network. The proposed method consists of three steps. First, to improve the efficiency and effectiveness of the segmentation, a 2D DenseNet classification network is utilized to screen out the non-coronary-artery slices. Second, we propose a coronary artery segmentation network based on the 3D-UNet, which is capable of extracting, fusing and rectifying features efficiently for accurate coronary artery segmentation. Specifically, in the encoding process of the 3D-UNet network, we adapt the dense block into the 3D-UNet so that it can extract rich and representative features for coronary artery segmentation; In the decoding process, 3D residual blocks with feature rectification capability are applied to improve the segmentation quality further. Third, we introduce a Gaussian weighting method to obtain the final segmentation results. This operation can highlight the more reliable segmentation results at the center of the 3D data blocks while weakening the less reliable segmentations at the block boundary when merging the segmentation results of spatially overlapping data blocks. Experiments demonstrate that our proposed method achieves a Dice Similarity Coefficient (DSC) value of 0.826 on a CCTA dataset constructed by us. The code of the proposed method is available at https://github.com/alongsong/3D_CAS .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
青木蓝发布了新的文献求助10
1秒前
1秒前
1秒前
李健的粉丝团团长应助yzz采纳,获得10
1秒前
1秒前
1秒前
1秒前
呆萌士晋发布了新的文献求助10
1秒前
luxxxiu发布了新的文献求助10
1秒前
可爱的函函应助正直亦旋采纳,获得10
2秒前
铜豌豆完成签到 ,获得积分10
2秒前
爆米花应助鳗鱼灵寒采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
小庄完成签到,获得积分10
3秒前
Left完成签到,获得积分10
3秒前
勤恳的莺发布了新的文献求助10
4秒前
4秒前
wu完成签到,获得积分10
4秒前
潇洒的青发布了新的文献求助10
4秒前
云中渊完成签到,获得积分10
4秒前
好的发布了新的文献求助10
4秒前
Li猪猪发布了新的文献求助10
5秒前
5秒前
5秒前
马sir完成签到 ,获得积分10
5秒前
5秒前
5秒前
纯真忆安发布了新的文献求助10
5秒前
xs应助zxw采纳,获得10
6秒前
赤邪发布了新的文献求助10
6秒前
6秒前
GG发布了新的文献求助10
6秒前
7秒前
dyh6802发布了新的文献求助10
8秒前
9秒前
科研通AI5应助自信的叫兽采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794