亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust prediction and validation of as-built density of Ti-6Al-4V parts manufactured via selective laser melting using a machine learning approach

选择性激光熔化 克里金 材料科学 参数统计 高斯过程 探地雷达 线性回归 超参数 激光功率缩放 水准点(测量) 高斯分布 机器学习 计算机科学 人工智能 激光器 复合材料 数学 统计 光学 地理 雷达 物理 微观结构 电信 量子力学 大地测量学
作者
Varad Maitra,Jing Shi,Cuiyuan Lu
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:78: 183-201 被引量:27
标识
DOI:10.1016/j.jmapro.2022.04.020
摘要

It is well known that slight changes in selective laser melting (SLM) process parameters may alter the outcome of mechanical and physical properties of the as-built material in a drastic and haphazard fashion. To overcome this, reliable property prediction models are most pertinent. In this study, a machine learning approach based on Gaussian Process Regression (GPR) is proposed to predict the relative density of as-built Ti-6Al-4V alloy manufactured via SLM, based on the most common input process parameters such as laser power, scanning speed, hatch spacing, and layer thickness, as well as an integrated input of volumetric energy density. A most comprehensive test dataset to train and verify GPR models was retrieved from literature papers that extensively investigated mechanical and physical properties of additively manufactured Ti-6Al-4V alloy. GPR models with four different kernel functions were analyzed and exponential GPR model with optimized hyperparameters was chosen as the most viable model for predicting as-built density of Ti-6Al-4V alloy. A parametric multiple linear regression (MLR) model was also presented and serves as a benchmark. When inferences were made on newer publication data, the GPR model and the MLR model predicted the densities with mean absolute errors (MAE) of 1.12% and 5.22% respectively. The inferior performance of the MLR model compared emphasizes the need of non-parametric supervised learning technique for SLM. To truly demonstrate the effectiveness of the proposed GPR model in real-world metal AM jobs, 22 experimental samples were printed. Predictions made on all the samples, when compared to their actual density values, resulted in MAE of 0.27%. Clearly, creation of most comprehensive mined data, kernel selection, and rigorous validation and verification of GPR model make this study one of its kind and prove the GPR model's predictive dexterity and the potential impact in the world of additive manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyabigale完成签到 ,获得积分10
1秒前
木穹完成签到,获得积分10
1秒前
搜集达人应助务实的落雁采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
希望天下0贩的0应助55555采纳,获得30
3秒前
5秒前
9秒前
一站到底发布了新的文献求助10
11秒前
快乐滑板应助bamsh31采纳,获得10
11秒前
还好完成签到,获得积分10
12秒前
大个应助鱼丸采纳,获得10
13秒前
14秒前
Orange应助祁连山的熊猫采纳,获得10
15秒前
15秒前
17秒前
ziyuexu发布了新的文献求助10
19秒前
22秒前
科研通AI2S应助jane123采纳,获得10
23秒前
25秒前
鱼丸发布了新的文献求助10
27秒前
29秒前
30秒前
小肖波比完成签到,获得积分10
32秒前
小彭陪小崔读个研完成签到 ,获得积分10
33秒前
33秒前
34秒前
Eternal发布了新的文献求助10
36秒前
42秒前
淡淡妙竹完成签到 ,获得积分10
49秒前
50秒前
bamsh31完成签到,获得积分20
50秒前
老金金完成签到 ,获得积分10
54秒前
迷你的靖雁完成签到,获得积分10
56秒前
聪明的云完成签到 ,获得积分10
58秒前
1分钟前
斯文败类应助一站到底采纳,获得10
1分钟前
jiangmax完成签到,获得积分10
1分钟前
1分钟前
丘比特应助Eternal采纳,获得10
1分钟前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346755
求助须知:如何正确求助?哪些是违规求助? 2973338
关于积分的说明 8658999
捐赠科研通 2653866
什么是DOI,文献DOI怎么找? 1453336
科研通“疑难数据库(出版商)”最低求助积分说明 672870
邀请新用户注册赠送积分活动 662808