Research Progress on Memristor: From Synapses to Computing Systems

记忆电阻器 计算机科学 计算机体系结构 电子工程 电气工程 工程类
作者
Xiaoxuan Yang,Brady Taylor,Ailong Wu,Yiran Chen,Leon O. Chua
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 1845-1857 被引量:102
标识
DOI:10.1109/tcsi.2022.3159153
摘要

As the limits of transistor technology are approached, feature size in integrated circuit transistors has been reduced very near to the minimum physically-realizable channel length, and it has become increasingly difficult to meet expectations outlined by Moore's law. As one of the most promising devices to replace transistors, memristors have many excellent properties that can be leveraged to develop new types of neural and non-von Neumann computing systems, which are expected to revolutionize information-processing technology. This survey provides a comparative overview of research progress on memristors. Different memristor synaptic devices are classified according to stimulation patterns and the working mechanisms of these various synaptic devices are analyzed in detail. Crossbar-based memristors have demonstrated advantages in physically executing vector-matrix multiplication and enabling highly power-efficient and area-efficient neuromorphic system designs. The extensive uses of crossbar-based memristors cover in-memory logic, vector-matrix multiplication, and many other fundamental computing operations. Furthermore, memristor-based architectures for efficient neural network training and inference have been studied. However, memristors have non-ideal properties due to programming inaccuracies and device imperfections from fabrication, which lead to error or mismatch in computed results. To build reliable memristor-based designs, circuit-level, algorithm-level, and system-level solutions to memristor reliability issues are being studied. To this end, state-of-the-art realizations of memristor crossbars, crossbar-based designs, and peripheral circuitry are presented, which show both promising full-system inference accuracy and excellent power efficiency in multiple tasks. Memristor in-situ learning benefits from high energy efficiency and biologically-imitative characteristics, which are conducive to further realizing hardware acceleration of cognitive learning. At present, the learning and training processes of brain-like networks are complex, presenting great challenges for network design and implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
回到未来完成签到,获得积分10
3秒前
3秒前
3秒前
Pumpkin发布了新的文献求助10
3秒前
无花果应助diony010采纳,获得10
3秒前
飘逸太英完成签到,获得积分20
4秒前
5秒前
wangchong发布了新的文献求助10
5秒前
爆米花应助仲谋采纳,获得10
5秒前
香蕉觅云应助彩色橘子采纳,获得10
6秒前
7秒前
8秒前
无限的思柔完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
bzlish发布了新的文献求助10
12秒前
sct发布了新的文献求助10
13秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
14秒前
冷傲的从雪完成签到 ,获得积分10
14秒前
14秒前
LL发布了新的文献求助10
15秒前
乐乐应助开心仙人掌采纳,获得20
15秒前
wangchong完成签到,获得积分10
15秒前
Pumpkin完成签到,获得积分10
15秒前
Rui_Rui完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
皮老八完成签到 ,获得积分10
17秒前
合适遥应助大力的惠采纳,获得30
17秒前
丘比特应助bzlish采纳,获得10
18秒前
18秒前
cc应助lu采纳,获得10
18秒前
wpk9904发布了新的文献求助10
19秒前
22秒前
精明人达发布了新的文献求助10
24秒前
25秒前
风趣的碧琴完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642531
求助须知:如何正确求助?哪些是违规求助? 4759094
关于积分的说明 15017959
捐赠科研通 4801089
什么是DOI,文献DOI怎么找? 2566399
邀请新用户注册赠送积分活动 1524484
关于科研通互助平台的介绍 1484011