已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research Progress on Memristor: From Synapses to Computing Systems

记忆电阻器 计算机科学 计算机体系结构 电子工程 电气工程 工程类
作者
Xiaoxuan Yang,Brady Taylor,Ailong Wu,Yiran Chen,Leon O. Chua
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 1845-1857 被引量:102
标识
DOI:10.1109/tcsi.2022.3159153
摘要

As the limits of transistor technology are approached, feature size in integrated circuit transistors has been reduced very near to the minimum physically-realizable channel length, and it has become increasingly difficult to meet expectations outlined by Moore's law. As one of the most promising devices to replace transistors, memristors have many excellent properties that can be leveraged to develop new types of neural and non-von Neumann computing systems, which are expected to revolutionize information-processing technology. This survey provides a comparative overview of research progress on memristors. Different memristor synaptic devices are classified according to stimulation patterns and the working mechanisms of these various synaptic devices are analyzed in detail. Crossbar-based memristors have demonstrated advantages in physically executing vector-matrix multiplication and enabling highly power-efficient and area-efficient neuromorphic system designs. The extensive uses of crossbar-based memristors cover in-memory logic, vector-matrix multiplication, and many other fundamental computing operations. Furthermore, memristor-based architectures for efficient neural network training and inference have been studied. However, memristors have non-ideal properties due to programming inaccuracies and device imperfections from fabrication, which lead to error or mismatch in computed results. To build reliable memristor-based designs, circuit-level, algorithm-level, and system-level solutions to memristor reliability issues are being studied. To this end, state-of-the-art realizations of memristor crossbars, crossbar-based designs, and peripheral circuitry are presented, which show both promising full-system inference accuracy and excellent power efficiency in multiple tasks. Memristor in-situ learning benefits from high energy efficiency and biologically-imitative characteristics, which are conducive to further realizing hardware acceleration of cognitive learning. At present, the learning and training processes of brain-like networks are complex, presenting great challenges for network design and implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
微笑的忆枫完成签到 ,获得积分10
3秒前
胜似闲庭信步完成签到,获得积分10
4秒前
Evan完成签到 ,获得积分10
6秒前
7秒前
czh驳回了Hello应助
7秒前
grass发布了新的文献求助10
8秒前
包容的绿蕊完成签到,获得积分20
10秒前
11秒前
俏皮白云完成签到 ,获得积分10
12秒前
清茶旧友完成签到,获得积分10
14秒前
dd发布了新的文献求助10
14秒前
HighFeng_Lei发布了新的文献求助10
15秒前
15秒前
nitsuj发布了新的文献求助10
15秒前
我是老大应助木木采纳,获得10
17秒前
19秒前
乐乐应助yehata采纳,获得10
20秒前
隐形语海完成签到 ,获得积分10
21秒前
22秒前
科研通AI5应助自由梦槐采纳,获得10
23秒前
23秒前
小王同学完成签到,获得积分10
23秒前
26秒前
科研通AI5应助没有昵称采纳,获得10
27秒前
DamenS发布了新的文献求助10
29秒前
华仔应助猪猪hero采纳,获得10
30秒前
31秒前
迅速泽洋完成签到,获得积分10
32秒前
思源应助夏日的风采纳,获得10
33秒前
xiaoying发布了新的文献求助10
36秒前
科目三应助elizabeth339采纳,获得50
37秒前
39秒前
irie发布了新的文献求助10
39秒前
欧力蟹发布了新的文献求助30
39秒前
szj发布了新的文献求助10
40秒前
42秒前
迷路的含桃完成签到 ,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422