Research Progress on Memristor: From Synapses to Computing Systems

记忆电阻器 计算机科学 计算机体系结构 电子工程 电气工程 工程类
作者
Xiaoxuan Yang,Brady Taylor,Ailong Wu,Yiran Chen,Leon O. Chua
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 1845-1857 被引量:102
标识
DOI:10.1109/tcsi.2022.3159153
摘要

As the limits of transistor technology are approached, feature size in integrated circuit transistors has been reduced very near to the minimum physically-realizable channel length, and it has become increasingly difficult to meet expectations outlined by Moore's law. As one of the most promising devices to replace transistors, memristors have many excellent properties that can be leveraged to develop new types of neural and non-von Neumann computing systems, which are expected to revolutionize information-processing technology. This survey provides a comparative overview of research progress on memristors. Different memristor synaptic devices are classified according to stimulation patterns and the working mechanisms of these various synaptic devices are analyzed in detail. Crossbar-based memristors have demonstrated advantages in physically executing vector-matrix multiplication and enabling highly power-efficient and area-efficient neuromorphic system designs. The extensive uses of crossbar-based memristors cover in-memory logic, vector-matrix multiplication, and many other fundamental computing operations. Furthermore, memristor-based architectures for efficient neural network training and inference have been studied. However, memristors have non-ideal properties due to programming inaccuracies and device imperfections from fabrication, which lead to error or mismatch in computed results. To build reliable memristor-based designs, circuit-level, algorithm-level, and system-level solutions to memristor reliability issues are being studied. To this end, state-of-the-art realizations of memristor crossbars, crossbar-based designs, and peripheral circuitry are presented, which show both promising full-system inference accuracy and excellent power efficiency in multiple tasks. Memristor in-situ learning benefits from high energy efficiency and biologically-imitative characteristics, which are conducive to further realizing hardware acceleration of cognitive learning. At present, the learning and training processes of brain-like networks are complex, presenting great challenges for network design and implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ohhruby发布了新的文献求助10
2秒前
4秒前
jzk2025发布了新的文献求助10
4秒前
4秒前
香蕉梨愁完成签到,获得积分10
5秒前
5秒前
5秒前
Shandongdaxiu完成签到 ,获得积分10
6秒前
难过大白完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
iiiorange发布了新的文献求助10
6秒前
7秒前
飘逸的钢铁侠完成签到,获得积分10
7秒前
zzc关注了科研通微信公众号
7秒前
勤恳锅包肉完成签到,获得积分10
7秒前
8秒前
qcwindchasing完成签到,获得积分10
8秒前
9秒前
CodeCraft应助zwq采纳,获得10
9秒前
9秒前
难过大白发布了新的文献求助10
10秒前
xxxx完成签到 ,获得积分10
10秒前
10秒前
magiczhu完成签到,获得积分10
11秒前
ccy发布了新的文献求助10
11秒前
12秒前
科研打工人完成签到,获得积分10
12秒前
万重山完成签到,获得积分10
13秒前
up325发布了新的文献求助10
13秒前
小木虫完成签到,获得积分10
14秒前
孔懿轩发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
abcd发布了新的文献求助10
18秒前
上官若男应助changyongcheng采纳,获得30
19秒前
Eutopia完成签到 ,获得积分20
20秒前
zz完成签到,获得积分10
20秒前
20秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5778469
求助须知:如何正确求助?哪些是违规求助? 5641573
关于积分的说明 15449483
捐赠科研通 4910143
什么是DOI,文献DOI怎么找? 2642399
邀请新用户注册赠送积分活动 1590239
关于科研通互助平台的介绍 1544574