已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research Progress on Memristor: From Synapses to Computing Systems

记忆电阻器 计算机科学 计算机体系结构 电子工程 电气工程 工程类
作者
Xiaoxuan Yang,Brady Taylor,Ailong Wu,Yiran Chen,Leon O. Chua
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 1845-1857 被引量:102
标识
DOI:10.1109/tcsi.2022.3159153
摘要

As the limits of transistor technology are approached, feature size in integrated circuit transistors has been reduced very near to the minimum physically-realizable channel length, and it has become increasingly difficult to meet expectations outlined by Moore's law. As one of the most promising devices to replace transistors, memristors have many excellent properties that can be leveraged to develop new types of neural and non-von Neumann computing systems, which are expected to revolutionize information-processing technology. This survey provides a comparative overview of research progress on memristors. Different memristor synaptic devices are classified according to stimulation patterns and the working mechanisms of these various synaptic devices are analyzed in detail. Crossbar-based memristors have demonstrated advantages in physically executing vector-matrix multiplication and enabling highly power-efficient and area-efficient neuromorphic system designs. The extensive uses of crossbar-based memristors cover in-memory logic, vector-matrix multiplication, and many other fundamental computing operations. Furthermore, memristor-based architectures for efficient neural network training and inference have been studied. However, memristors have non-ideal properties due to programming inaccuracies and device imperfections from fabrication, which lead to error or mismatch in computed results. To build reliable memristor-based designs, circuit-level, algorithm-level, and system-level solutions to memristor reliability issues are being studied. To this end, state-of-the-art realizations of memristor crossbars, crossbar-based designs, and peripheral circuitry are presented, which show both promising full-system inference accuracy and excellent power efficiency in multiple tasks. Memristor in-situ learning benefits from high energy efficiency and biologically-imitative characteristics, which are conducive to further realizing hardware acceleration of cognitive learning. At present, the learning and training processes of brain-like networks are complex, presenting great challenges for network design and implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Zhengzhang完成签到 ,获得积分10
3秒前
顾矜应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
5秒前
5秒前
华仔应助科研通管家采纳,获得10
5秒前
yx_cheng应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
舒伯特完成签到 ,获得积分10
6秒前
10秒前
11秒前
薄荷梨发布了新的文献求助10
12秒前
圈圈完成签到 ,获得积分10
14秒前
小肥吴发布了新的文献求助10
14秒前
Hello应助博修采纳,获得10
16秒前
彭于晏应助yxf采纳,获得10
16秒前
大模型应助平常从蓉采纳,获得10
17秒前
蜂蜜罐头完成签到 ,获得积分10
18秒前
19秒前
22秒前
22秒前
23秒前
23秒前
LINDY发布了新的文献求助30
24秒前
bbdd2334发布了新的文献求助10
26秒前
17381362015发布了新的文献求助10
26秒前
晓湫发布了新的文献求助10
26秒前
可爱的函函应助小肥吴采纳,获得10
29秒前
33秒前
LLX发布了新的文献求助10
34秒前
酷炫的凤妖完成签到 ,获得积分10
35秒前
过时的热狗完成签到 ,获得积分10
37秒前
博修发布了新的文献求助10
37秒前
41秒前
41秒前
薄荷梨完成签到,获得积分10
44秒前
晓湫发布了新的文献求助10
44秒前
white发布了新的文献求助10
46秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963003
求助须知:如何正确求助?哪些是违规求助? 3508926
关于积分的说明 11144142
捐赠科研通 3241877
什么是DOI,文献DOI怎么找? 1791703
邀请新用户注册赠送积分活动 873095
科研通“疑难数据库(出版商)”最低求助积分说明 803603