已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research Progress on Memristor: From Synapses to Computing Systems

记忆电阻器 计算机科学 计算机体系结构 电子工程 电气工程 工程类
作者
Xiaoxuan Yang,Brady Taylor,Ailong Wu,Yiran Chen,Leon O. Chua
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:69 (5): 1845-1857 被引量:101
标识
DOI:10.1109/tcsi.2022.3159153
摘要

As the limits of transistor technology are approached, feature size in integrated circuit transistors has been reduced very near to the minimum physically-realizable channel length, and it has become increasingly difficult to meet expectations outlined by Moore's law. As one of the most promising devices to replace transistors, memristors have many excellent properties that can be leveraged to develop new types of neural and non-von Neumann computing systems, which are expected to revolutionize information-processing technology. This survey provides a comparative overview of research progress on memristors. Different memristor synaptic devices are classified according to stimulation patterns and the working mechanisms of these various synaptic devices are analyzed in detail. Crossbar-based memristors have demonstrated advantages in physically executing vector-matrix multiplication and enabling highly power-efficient and area-efficient neuromorphic system designs. The extensive uses of crossbar-based memristors cover in-memory logic, vector-matrix multiplication, and many other fundamental computing operations. Furthermore, memristor-based architectures for efficient neural network training and inference have been studied. However, memristors have non-ideal properties due to programming inaccuracies and device imperfections from fabrication, which lead to error or mismatch in computed results. To build reliable memristor-based designs, circuit-level, algorithm-level, and system-level solutions to memristor reliability issues are being studied. To this end, state-of-the-art realizations of memristor crossbars, crossbar-based designs, and peripheral circuitry are presented, which show both promising full-system inference accuracy and excellent power efficiency in multiple tasks. Memristor in-situ learning benefits from high energy efficiency and biologically-imitative characteristics, which are conducive to further realizing hardware acceleration of cognitive learning. At present, the learning and training processes of brain-like networks are complex, presenting great challenges for network design and implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
7秒前
xixihaha发布了新的文献求助10
7秒前
8秒前
蟹浦肉发布了新的文献求助10
8秒前
真实的咖啡完成签到,获得积分10
12秒前
金金宝贝发布了新的文献求助10
13秒前
16秒前
19秒前
19秒前
20秒前
charming应助木鸽子采纳,获得10
21秒前
21秒前
粥粥发布了新的文献求助20
22秒前
12发布了新的文献求助10
22秒前
麦兜完成签到 ,获得积分10
23秒前
无敌鱼发布了新的文献求助10
25秒前
852应助梦屿千寻采纳,获得10
26秒前
飞逝的快乐时光完成签到 ,获得积分10
27秒前
GDUSK发布了新的文献求助10
28秒前
Ventus完成签到 ,获得积分10
32秒前
36秒前
38秒前
Meng完成签到,获得积分10
39秒前
秭归子归完成签到 ,获得积分10
39秒前
明明发布了新的文献求助10
41秒前
kakko2ou发布了新的文献求助10
48秒前
赘婿应助12采纳,获得10
48秒前
53秒前
且从容完成签到,获得积分10
53秒前
小十一完成签到 ,获得积分20
55秒前
AzA发布了新的文献求助10
55秒前
爆米花应助科研通管家采纳,获得10
55秒前
赘婿应助科研通管家采纳,获得30
55秒前
李健应助科研通管家采纳,获得10
55秒前
慕青应助科研通管家采纳,获得10
55秒前
55秒前
蒋瑞轩发布了新的文献求助10
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316785
求助须知:如何正确求助?哪些是违规求助? 2948598
关于积分的说明 8541415
捐赠科研通 2624511
什么是DOI,文献DOI怎么找? 1436234
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651775