已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study.

医学 队列 回顾性队列研究 接收机工作特性 内科学 癌症 肿瘤科 外科
作者
Yuming Jiang,Zhicheng Zhang,Qingyu Yuan,Wei Wang,Hongyu Wang,Tuanjie Li,Weicai Huang,Jingjing Xie,Chuanli Chen,Zepang Sun,Jiang Yu,Yikai Xu,George A Poultsides,Lei Xing,Zhiwei Zhou,Guoxin Li,Ruijiang Li
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (5): e340-e350 被引量:1
标识
DOI:10.1016/s2589-7500(22)00040-1
摘要

Peritoneal recurrence is the predominant pattern of relapse after curative-intent surgery for gastric cancer and portends a dismal prognosis. Accurate individualised prediction of peritoneal recurrence is crucial to identify patients who might benefit from intensive treatment. We aimed to develop predictive models for peritoneal recurrence and prognosis in gastric cancer.In this retrospective multi-institution study of 2320 patients, we developed a multitask deep learning model for the simultaneous prediction of peritoneal recurrence and disease-free survival using preoperative CT images. Patients in the training cohort (n=510) and the internal validation cohort (n=767) were recruited from Southern Medical University, Guangzhou, China. Patients in the external validation cohort (n=1043) were recruited from Sun Yat-sen University Cancer Center, Guangzhou, China. We evaluated the prognostic accuracy of the model as well as its association with chemotherapy response. Furthermore, we assessed whether the model could improve the ability of clinicians to predict peritoneal recurrence.The deep learning model had a consistently high accuracy in predicting peritoneal recurrence in the training cohort (area under the receiver operating characteristic curve [AUC] 0·857; 95% CI 0·826-0·889), internal validation cohort (0·856; 0·829-0·882), and external validation cohort (0·843; 0·819-0·866). When informed by the artificial intelligence (AI) model, the sensitivity and inter-rater agreement of oncologists for predicting peritoneal recurrence was improved. The model was able to predict disease-free survival in the training cohort (C-index 0·654; 95% CI 0·616-0·691), internal validation cohort (0·668; 0·643-0·693), and external validation cohort (0·610; 0·583-0·636). In multivariable analysis, the model predicted peritoneal recurrence and disease-free survival independently of clinicopathological variables (p<0·0001 for all). For patients with a predicted high risk of peritoneal recurrence and low survival, adjuvant chemotherapy was associated with improved disease-free survival in both stage II disease (hazard ratio [HR] 0·543 [95% CI 0·362-0·815]; p=0·003) and stage III disease (0·531 [0·432-0·652]; p<0·0001). By contrast, chemotherapy had no impact on disease-free survival for patients with a predicted low risk of peritoneal recurrence and high survival. For the remaining patients, the benefit of chemotherapy depended on stage: only those with stage III disease derived benefit from chemotherapy (HR 0·637 [95% CI 0·484-0·838]; p=0·001).The deep learning model could allow accurate prediction of peritoneal recurrence and survival in patients with gastric cancer. Prospective studies are required to test the clinical utility of this model in guiding personalised treatment in combination with clinicopathological criteria.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万万发布了新的文献求助20
1秒前
5秒前
111完成签到 ,获得积分10
6秒前
7秒前
平常的可乐完成签到 ,获得积分10
8秒前
Orange应助切奇莉亚采纳,获得10
8秒前
平常的伊应助知更鸟采纳,获得50
9秒前
9秒前
12秒前
14秒前
li发布了新的文献求助10
15秒前
19秒前
哇咔咔发布了新的文献求助10
19秒前
20秒前
姜姜完成签到,获得积分10
23秒前
调皮的薯片完成签到 ,获得积分10
24秒前
jw82完成签到,获得积分10
24秒前
晚枫发布了新的文献求助10
24秒前
25秒前
爱听歌婴完成签到,获得积分10
27秒前
赘婿应助欢呼的世立采纳,获得10
28秒前
无聊的落雁完成签到,获得积分10
30秒前
威武的薯片完成签到 ,获得积分10
30秒前
钰钰yuyu发布了新的文献求助10
32秒前
32秒前
小丫头大傻妞完成签到 ,获得积分10
33秒前
jackten发布了新的文献求助10
35秒前
香蕉觅云应助跳跃的饼干采纳,获得10
35秒前
36秒前
36秒前
lizeyu完成签到,获得积分10
36秒前
Owen应助大贺呀采纳,获得10
36秒前
39秒前
常山赵紫龍完成签到,获得积分10
39秒前
科研通AI2S应助aabb采纳,获得10
40秒前
朴素蜡烛发布了新的文献求助10
41秒前
tutu发布了新的文献求助10
42秒前
43秒前
44秒前
哇咔咔完成签到,获得积分20
46秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136790
求助须知:如何正确求助?哪些是违规求助? 2787837
关于积分的说明 7783292
捐赠科研通 2443917
什么是DOI,文献DOI怎么找? 1299485
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954