Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study.

医学 队列 回顾性队列研究 接收机工作特性 内科学 癌症 肿瘤科 外科
作者
Yuming Jiang,Zhicheng Zhang,Qingyu Yuan,Wei Wang,Hongyu Wang,Tuanjie Li,Weicai Huang,Jingjing Xie,Chuanli Chen,Zepang Sun,Jiang Yu,Yikai Xu,George A Poultsides,Lei Xing,Zhiwei Zhou,Guoxin Li,Ruijiang Li
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (5): e340-e350 被引量:1
标识
DOI:10.1016/s2589-7500(22)00040-1
摘要

Peritoneal recurrence is the predominant pattern of relapse after curative-intent surgery for gastric cancer and portends a dismal prognosis. Accurate individualised prediction of peritoneal recurrence is crucial to identify patients who might benefit from intensive treatment. We aimed to develop predictive models for peritoneal recurrence and prognosis in gastric cancer.In this retrospective multi-institution study of 2320 patients, we developed a multitask deep learning model for the simultaneous prediction of peritoneal recurrence and disease-free survival using preoperative CT images. Patients in the training cohort (n=510) and the internal validation cohort (n=767) were recruited from Southern Medical University, Guangzhou, China. Patients in the external validation cohort (n=1043) were recruited from Sun Yat-sen University Cancer Center, Guangzhou, China. We evaluated the prognostic accuracy of the model as well as its association with chemotherapy response. Furthermore, we assessed whether the model could improve the ability of clinicians to predict peritoneal recurrence.The deep learning model had a consistently high accuracy in predicting peritoneal recurrence in the training cohort (area under the receiver operating characteristic curve [AUC] 0·857; 95% CI 0·826-0·889), internal validation cohort (0·856; 0·829-0·882), and external validation cohort (0·843; 0·819-0·866). When informed by the artificial intelligence (AI) model, the sensitivity and inter-rater agreement of oncologists for predicting peritoneal recurrence was improved. The model was able to predict disease-free survival in the training cohort (C-index 0·654; 95% CI 0·616-0·691), internal validation cohort (0·668; 0·643-0·693), and external validation cohort (0·610; 0·583-0·636). In multivariable analysis, the model predicted peritoneal recurrence and disease-free survival independently of clinicopathological variables (p<0·0001 for all). For patients with a predicted high risk of peritoneal recurrence and low survival, adjuvant chemotherapy was associated with improved disease-free survival in both stage II disease (hazard ratio [HR] 0·543 [95% CI 0·362-0·815]; p=0·003) and stage III disease (0·531 [0·432-0·652]; p<0·0001). By contrast, chemotherapy had no impact on disease-free survival for patients with a predicted low risk of peritoneal recurrence and high survival. For the remaining patients, the benefit of chemotherapy depended on stage: only those with stage III disease derived benefit from chemotherapy (HR 0·637 [95% CI 0·484-0·838]; p=0·001).The deep learning model could allow accurate prediction of peritoneal recurrence and survival in patients with gastric cancer. Prospective studies are required to test the clinical utility of this model in guiding personalised treatment in combination with clinicopathological criteria.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助辣椒面采纳,获得10
刚刚
1秒前
吴雪完成签到 ,获得积分10
2秒前
会飞的猪完成签到 ,获得积分10
4秒前
无忧发布了新的文献求助10
4秒前
5秒前
欢呼的雁山完成签到,获得积分20
5秒前
天下白完成签到,获得积分10
8秒前
Owen应助欢呼的雁山采纳,获得10
8秒前
王王瑶发布了新的文献求助10
10秒前
寒月完成签到,获得积分20
11秒前
邓谷云发布了新的文献求助10
13秒前
大力的寻琴完成签到 ,获得积分10
14秒前
七街完成签到 ,获得积分10
14秒前
寒月发布了新的文献求助10
14秒前
phobeeee完成签到 ,获得积分10
15秒前
言希完成签到 ,获得积分10
16秒前
罗大大完成签到 ,获得积分0
16秒前
19秒前
19秒前
吃猫的鱼发布了新的文献求助30
24秒前
24秒前
kosumdoti完成签到,获得积分10
25秒前
蓦然发布了新的文献求助10
25秒前
Rowena完成签到,获得积分10
26秒前
30秒前
Poik完成签到,获得积分10
30秒前
钟玫完成签到 ,获得积分10
30秒前
FFFFF完成签到,获得积分10
31秒前
王王瑶发布了新的文献求助10
32秒前
故事细腻发布了新的文献求助10
33秒前
邓谷云发布了新的文献求助10
34秒前
banksy发布了新的文献求助10
34秒前
38秒前
39秒前
40秒前
41秒前
42秒前
pangkuan完成签到,获得积分10
42秒前
糖霜烤面包完成签到,获得积分10
42秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383727
求助须知:如何正确求助?哪些是违规求助? 4506742
关于积分的说明 14025422
捐赠科研通 4416400
什么是DOI,文献DOI怎么找? 2426006
邀请新用户注册赠送积分活动 1418734
关于科研通互助平台的介绍 1396986