Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study.

医学 队列 回顾性队列研究 接收机工作特性 内科学 癌症 肿瘤科 外科
作者
Yuming Jiang,Zhicheng Zhang,Qingyu Yuan,Wei Wang,Hongyu Wang,Tuanjie Li,Weicai Huang,Jingjing Xie,Chuanli Chen,Zepang Sun,Jiang Yu,Yikai Xu,George A Poultsides,Lei Xing,Zhiwei Zhou,Guoxin Li,Ruijiang Li
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:4 (5): e340-e350 被引量:1
标识
DOI:10.1016/s2589-7500(22)00040-1
摘要

Peritoneal recurrence is the predominant pattern of relapse after curative-intent surgery for gastric cancer and portends a dismal prognosis. Accurate individualised prediction of peritoneal recurrence is crucial to identify patients who might benefit from intensive treatment. We aimed to develop predictive models for peritoneal recurrence and prognosis in gastric cancer.In this retrospective multi-institution study of 2320 patients, we developed a multitask deep learning model for the simultaneous prediction of peritoneal recurrence and disease-free survival using preoperative CT images. Patients in the training cohort (n=510) and the internal validation cohort (n=767) were recruited from Southern Medical University, Guangzhou, China. Patients in the external validation cohort (n=1043) were recruited from Sun Yat-sen University Cancer Center, Guangzhou, China. We evaluated the prognostic accuracy of the model as well as its association with chemotherapy response. Furthermore, we assessed whether the model could improve the ability of clinicians to predict peritoneal recurrence.The deep learning model had a consistently high accuracy in predicting peritoneal recurrence in the training cohort (area under the receiver operating characteristic curve [AUC] 0·857; 95% CI 0·826-0·889), internal validation cohort (0·856; 0·829-0·882), and external validation cohort (0·843; 0·819-0·866). When informed by the artificial intelligence (AI) model, the sensitivity and inter-rater agreement of oncologists for predicting peritoneal recurrence was improved. The model was able to predict disease-free survival in the training cohort (C-index 0·654; 95% CI 0·616-0·691), internal validation cohort (0·668; 0·643-0·693), and external validation cohort (0·610; 0·583-0·636). In multivariable analysis, the model predicted peritoneal recurrence and disease-free survival independently of clinicopathological variables (p<0·0001 for all). For patients with a predicted high risk of peritoneal recurrence and low survival, adjuvant chemotherapy was associated with improved disease-free survival in both stage II disease (hazard ratio [HR] 0·543 [95% CI 0·362-0·815]; p=0·003) and stage III disease (0·531 [0·432-0·652]; p<0·0001). By contrast, chemotherapy had no impact on disease-free survival for patients with a predicted low risk of peritoneal recurrence and high survival. For the remaining patients, the benefit of chemotherapy depended on stage: only those with stage III disease derived benefit from chemotherapy (HR 0·637 [95% CI 0·484-0·838]; p=0·001).The deep learning model could allow accurate prediction of peritoneal recurrence and survival in patients with gastric cancer. Prospective studies are required to test the clinical utility of this model in guiding personalised treatment in combination with clinicopathological criteria.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾七七完成签到,获得积分10
刚刚
刚刚
Orange应助菠萝采纳,获得10
1秒前
火星上的鸵鸟完成签到 ,获得积分10
1秒前
赘婿应助胡说八道采纳,获得10
1秒前
sunyanghu369发布了新的文献求助10
1秒前
缚大哥发布了新的文献求助10
1秒前
Xin发布了新的文献求助10
1秒前
简单半邪完成签到,获得积分10
2秒前
2秒前
夏末未央完成签到,获得积分10
3秒前
科研通AI5应助王运静采纳,获得10
3秒前
lixian完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
淡定发布了新的文献求助10
5秒前
Nana完成签到 ,获得积分10
5秒前
5秒前
Sunnig盈完成签到,获得积分10
5秒前
纸质超人发布了新的文献求助10
6秒前
杨梦茹完成签到,获得积分10
7秒前
易烊千玺发布了新的文献求助10
8秒前
爱学习的小李完成签到 ,获得积分10
8秒前
Xin完成签到,获得积分10
8秒前
JamesPei应助嘉欣采纳,获得10
8秒前
森木发布了新的文献求助10
8秒前
10秒前
10秒前
彭于彦祖应助摩卡采纳,获得150
10秒前
拉长的鼠标完成签到,获得积分20
10秒前
彭泽林发布了新的文献求助10
10秒前
wanci应助吭哧吭哧采纳,获得10
10秒前
zz完成签到,获得积分10
10秒前
打打应助支珩采纳,获得30
10秒前
GG发布了新的文献求助10
11秒前
科研通AI5应助428采纳,获得10
11秒前
传奇3应助郑森友采纳,获得10
12秒前
科研通AI5应助郑森友采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603379
求助须知:如何正确求助?哪些是违规求助? 4012139
关于积分的说明 12422052
捐赠科研通 3692589
什么是DOI,文献DOI怎么找? 2035723
邀请新用户注册赠送积分活动 1068884
科研通“疑难数据库(出版商)”最低求助积分说明 953371