已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting peritoneal recurrence and disease-free survival from CT images in gastric cancer with multitask deep learning: a retrospective study.

医学 队列 回顾性队列研究 接收机工作特性 内科学 癌症 肿瘤科 外科
作者
Yuming Jiang,Zhicheng Zhang,Qingyu Yuan,Wei Wang,Hongyu Wang,Tuanjie Li,Weicai Huang,Jingjing Xie,Chuanli Chen,Zepang Sun,Jiang Yu,Yikai Xu,George A Poultsides,Lei Xing,Zhiwei Zhou,Guoxin Li,Ruijiang Li
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:4 (5): e340-e350 被引量:1
标识
DOI:10.1016/s2589-7500(22)00040-1
摘要

Peritoneal recurrence is the predominant pattern of relapse after curative-intent surgery for gastric cancer and portends a dismal prognosis. Accurate individualised prediction of peritoneal recurrence is crucial to identify patients who might benefit from intensive treatment. We aimed to develop predictive models for peritoneal recurrence and prognosis in gastric cancer.In this retrospective multi-institution study of 2320 patients, we developed a multitask deep learning model for the simultaneous prediction of peritoneal recurrence and disease-free survival using preoperative CT images. Patients in the training cohort (n=510) and the internal validation cohort (n=767) were recruited from Southern Medical University, Guangzhou, China. Patients in the external validation cohort (n=1043) were recruited from Sun Yat-sen University Cancer Center, Guangzhou, China. We evaluated the prognostic accuracy of the model as well as its association with chemotherapy response. Furthermore, we assessed whether the model could improve the ability of clinicians to predict peritoneal recurrence.The deep learning model had a consistently high accuracy in predicting peritoneal recurrence in the training cohort (area under the receiver operating characteristic curve [AUC] 0·857; 95% CI 0·826-0·889), internal validation cohort (0·856; 0·829-0·882), and external validation cohort (0·843; 0·819-0·866). When informed by the artificial intelligence (AI) model, the sensitivity and inter-rater agreement of oncologists for predicting peritoneal recurrence was improved. The model was able to predict disease-free survival in the training cohort (C-index 0·654; 95% CI 0·616-0·691), internal validation cohort (0·668; 0·643-0·693), and external validation cohort (0·610; 0·583-0·636). In multivariable analysis, the model predicted peritoneal recurrence and disease-free survival independently of clinicopathological variables (p<0·0001 for all). For patients with a predicted high risk of peritoneal recurrence and low survival, adjuvant chemotherapy was associated with improved disease-free survival in both stage II disease (hazard ratio [HR] 0·543 [95% CI 0·362-0·815]; p=0·003) and stage III disease (0·531 [0·432-0·652]; p<0·0001). By contrast, chemotherapy had no impact on disease-free survival for patients with a predicted low risk of peritoneal recurrence and high survival. For the remaining patients, the benefit of chemotherapy depended on stage: only those with stage III disease derived benefit from chemotherapy (HR 0·637 [95% CI 0·484-0·838]; p=0·001).The deep learning model could allow accurate prediction of peritoneal recurrence and survival in patients with gastric cancer. Prospective studies are required to test the clinical utility of this model in guiding personalised treatment in combination with clinicopathological criteria.None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪花发布了新的文献求助10
2秒前
xixixixix发布了新的文献求助10
2秒前
我是老大应助张aa采纳,获得10
2秒前
天明完成签到,获得积分10
2秒前
千早爱音发布了新的文献求助100
3秒前
毛祺隆完成签到,获得积分10
4秒前
4秒前
5秒前
伏binglin发布了新的文献求助10
5秒前
wjq_wind关注了科研通微信公众号
5秒前
ymlllym发布了新的文献求助10
5秒前
Fly发布了新的文献求助10
6秒前
6秒前
6秒前
肖兰完成签到,获得积分10
7秒前
7秒前
思源应助苏诗兰采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
上官若男应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
8秒前
elliotzzz应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得30
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
火山啊啊啊完成签到 ,获得积分10
8秒前
谦让馒头完成签到,获得积分10
9秒前
9秒前
9秒前
潇洒紫萱发布了新的文献求助30
9秒前
10秒前
10秒前
elfff发布了新的文献求助10
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443372
求助须知:如何正确求助?哪些是违规求助? 4553292
关于积分的说明 14241453
捐赠科研通 4474854
什么是DOI,文献DOI怎么找? 2452158
邀请新用户注册赠送积分活动 1443137
关于科研通互助平台的介绍 1418745