已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Using Machine Learning to Identify Metabolomic Signatures of Pediatric Chronic Kidney Disease Etiology.

代谢组学 医学 肾脏疾病 内科学 生物信息学
作者
Arthur M Lee,Jian Hu,Yunwen Xu,Alison G Abraham,Rui Xiao,Josef Coresh,Casey Rebholz,Jingsha Chen,Eugene P Rhee,Harold I. Feldman,Vasan S Ramachandran,Paul L Kimmel,Bradley A. Warady,Susan L Furth,Michelle R Denburg
出处
期刊:Journal of the American Society of Nephrology [American Society of Nephrology]
卷期号:33 (2): 375-386
标识
DOI:10.1681/asn.2021040538
摘要

Untargeted plasma metabolomic profiling combined with machine learning (ML) may lead to discovery of metabolic profiles that inform our understanding of pediatric CKD causes. We sought to identify metabolomic signatures in pediatric CKD based on diagnosis: FSGS, obstructive uropathy (OU), aplasia/dysplasia/hypoplasia (A/D/H), and reflux nephropathy (RN).Untargeted metabolomic quantification (GC-MS/LC-MS, Metabolon) was performed on plasma from 702 Chronic Kidney Disease in Children study participants (n: FSGS=63, OU=122, A/D/H=109, and RN=86). Lasso regression was used for feature selection, adjusting for clinical covariates. Four methods were then applied to stratify significance: logistic regression, support vector machine, random forest, and extreme gradient boosting. ML training was performed on 80% total cohort subsets and validated on 20% holdout subsets. Important features were selected based on being significant in at least two of the four modeling approaches. We additionally performed pathway enrichment analysis to identify metabolic subpathways associated with CKD cause.ML models were evaluated on holdout subsets with receiver-operator and precision-recall area-under-the-curve, F1 score, and Matthews correlation coefficient. ML models outperformed no-skill prediction. Metabolomic profiles were identified based on cause. FSGS was associated with the sphingomyelin-ceramide axis. FSGS was also associated with individual plasmalogen metabolites and the subpathway. OU was associated with gut microbiome-derived histidine metabolites.ML models identified metabolomic signatures based on CKD cause. Using ML techniques in conjunction with traditional biostatistics, we demonstrated that sphingomyelin-ceramide and plasmalogen dysmetabolism are associated with FSGS and that gut microbiome-derived histidine metabolites are associated with OU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doraemon完成签到 ,获得积分10
刚刚
DreamMaker完成签到,获得积分10
刚刚
ZHANG完成签到 ,获得积分10
1秒前
小马哥完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
adam完成签到 ,获得积分10
2秒前
ljj001ljj发布了新的文献求助10
2秒前
alan完成签到 ,获得积分10
2秒前
ooook完成签到 ,获得积分10
3秒前
Bottle完成签到,获得积分10
3秒前
李李原上草完成签到 ,获得积分10
3秒前
Ludwig完成签到,获得积分10
3秒前
隐形路灯完成签到 ,获得积分10
3秒前
阿烨完成签到,获得积分10
3秒前
沉默问夏完成签到 ,获得积分10
4秒前
sherry完成签到 ,获得积分10
5秒前
伊蕾娜完成签到 ,获得积分10
6秒前
李雷完成签到,获得积分10
6秒前
三哥完成签到,获得积分10
6秒前
inu1255完成签到,获得积分0
6秒前
于是乎完成签到,获得积分10
7秒前
侠女完成签到 ,获得积分10
7秒前
FERN0826完成签到 ,获得积分10
9秒前
尾状叶完成签到,获得积分10
10秒前
乐乐应助ljj001ljj采纳,获得30
10秒前
科研小狗完成签到 ,获得积分10
11秒前
亓椰iko完成签到 ,获得积分10
12秒前
YUXIN完成签到 ,获得积分10
12秒前
www完成签到,获得积分10
12秒前
背后雨柏完成签到 ,获得积分10
13秒前
布丁完成签到 ,获得积分10
13秒前
有点鸭梨呀完成签到 ,获得积分10
14秒前
越啊完成签到,获得积分10
15秒前
Nnnnnkw完成签到 ,获得积分10
15秒前
怕孤单的幼荷完成签到 ,获得积分10
15秒前
逍遥小书生完成签到 ,获得积分10
15秒前
Leviathan完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Nick完成签到 ,获得积分10
16秒前
思思贪念念完成签到 ,获得积分10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666266
求助须知:如何正确求助?哪些是违规求助? 3225309
关于积分的说明 9762492
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607513
邀请新用户注册赠送积分活动 759242
科研通“疑难数据库(出版商)”最低求助积分说明 735185

今日热心研友

NZH
20
pluto
10
nenoaowu
1
Xiaoxiao
10
MchemG
1
安静的远山
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10