DeepHisCoM: deep learning pathway analysis using hierarchical structural component models

计算生物学 生物途径 信号转导 MAPK/ERK通路 生物 代谢途径 生物信息学 基因 遗传学 基因表达
作者
Chanwoo Park,Boram Kim,Taesung Park
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5)
标识
DOI:10.1093/bib/bbac171
摘要

Many statistical methods for pathway analysis have been used to identify pathways associated with the disease along with biological factors such as genes and proteins. However, most pathway analysis methods neglect the complex nonlinear relationship between biological factors and pathways. In this study, we propose a Deep-learning pathway analysis using Hierarchical structured CoMponent models (DeepHisCoM) that utilize deep learning to consider a nonlinear complex contribution of biological factors to pathways by constructing a multilayered model which accounts for hierarchical biological structure. Through simulation studies, DeepHisCoM was shown to have a higher power in the nonlinear pathway effect and comparable power for the linear pathway effect when compared to the conventional pathway methods. Application to hepatocellular carcinoma (HCC) omics datasets, including metabolomic, transcriptomic and metagenomic datasets, demonstrated that DeepHisCoM successfully identified three well-known pathways that are highly associated with HCC, such as lysine degradation, valine, leucine and isoleucine biosynthesis and phenylalanine, tyrosine and tryptophan. Application to the coronavirus disease-2019 (COVID-19) single-nucleotide polymorphism (SNP) dataset also showed that DeepHisCoM identified four pathways that are highly associated with the severity of COVID-19, such as mitogen-activated protein kinase (MAPK) signaling pathway, gonadotropin-releasing hormone (GnRH) signaling pathway, hypertrophic cardiomyopathy and dilated cardiomyopathy. Codes are available at https://github.com/chanwoo-park-official/DeepHisCoM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无私醉蝶发布了新的文献求助10
刚刚
刚刚
侧耳倾听完成签到,获得积分10
刚刚
刚刚
小小完成签到,获得积分10
刚刚
xd关闭了xd文献求助
1秒前
sea完成签到 ,获得积分10
2秒前
张风琴发布了新的文献求助10
2秒前
3秒前
李爱国应助海之恋心采纳,获得10
4秒前
小小发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
djshao发布了新的文献求助10
4秒前
侧耳倾听发布了新的文献求助10
5秒前
韦老虎发布了新的文献求助10
5秒前
传奇3应助circles采纳,获得10
6秒前
7秒前
7秒前
8R60d8应助shinn采纳,获得10
7秒前
7秒前
所所应助阿关采纳,获得10
7秒前
汉堡包应助无私醉蝶采纳,获得10
7秒前
7秒前
Luojiayi发布了新的文献求助10
8秒前
蚊蚊爱读书应助木木彡采纳,获得10
9秒前
所所应助温婉的篮球采纳,获得10
11秒前
12秒前
丘比特应助zz采纳,获得10
13秒前
小菠萝完成签到,获得积分10
13秒前
韦老虎发布了新的文献求助10
13秒前
Ho发布了新的文献求助10
13秒前
海蓝之心发布了新的文献求助10
13秒前
Rita应助清秀千兰采纳,获得10
14秒前
14秒前
14秒前
15秒前
15秒前
15秒前
塔塔完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474365
求助须知:如何正确求助?哪些是违规求助? 4576170
关于积分的说明 14356808
捐赠科研通 4504096
什么是DOI,文献DOI怎么找? 2467953
邀请新用户注册赠送积分活动 1455656
关于科研通互助平台的介绍 1429644