DeepHisCoM: deep learning pathway analysis using hierarchical structural component models

计算生物学 生物途径 信号转导 MAPK/ERK通路 生物 代谢途径 生物信息学 基因 遗传学 基因表达
作者
Chanwoo Park,Boram Kim,Taesung Park
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5)
标识
DOI:10.1093/bib/bbac171
摘要

Many statistical methods for pathway analysis have been used to identify pathways associated with the disease along with biological factors such as genes and proteins. However, most pathway analysis methods neglect the complex nonlinear relationship between biological factors and pathways. In this study, we propose a Deep-learning pathway analysis using Hierarchical structured CoMponent models (DeepHisCoM) that utilize deep learning to consider a nonlinear complex contribution of biological factors to pathways by constructing a multilayered model which accounts for hierarchical biological structure. Through simulation studies, DeepHisCoM was shown to have a higher power in the nonlinear pathway effect and comparable power for the linear pathway effect when compared to the conventional pathway methods. Application to hepatocellular carcinoma (HCC) omics datasets, including metabolomic, transcriptomic and metagenomic datasets, demonstrated that DeepHisCoM successfully identified three well-known pathways that are highly associated with HCC, such as lysine degradation, valine, leucine and isoleucine biosynthesis and phenylalanine, tyrosine and tryptophan. Application to the coronavirus disease-2019 (COVID-19) single-nucleotide polymorphism (SNP) dataset also showed that DeepHisCoM identified four pathways that are highly associated with the severity of COVID-19, such as mitogen-activated protein kinase (MAPK) signaling pathway, gonadotropin-releasing hormone (GnRH) signaling pathway, hypertrophic cardiomyopathy and dilated cardiomyopathy. Codes are available at https://github.com/chanwoo-park-official/DeepHisCoM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhen完成签到,获得积分10
刚刚
张子捷发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
九零后无心完成签到,获得积分10
2秒前
2秒前
繁荣的代秋完成签到 ,获得积分10
3秒前
JR完成签到,获得积分10
3秒前
TvTiing完成签到,获得积分10
4秒前
banana完成签到,获得积分10
4秒前
666关闭了666文献求助
5秒前
fshell发布了新的文献求助20
5秒前
xm发布了新的文献求助10
6秒前
周声声发布了新的文献求助30
6秒前
7秒前
Lucas应助Dawson采纳,获得10
8秒前
8秒前
8秒前
Enna完成签到,获得积分10
8秒前
9秒前
9秒前
明天你好完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
liang2508发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
liang2508发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4924906
求助须知:如何正确求助?哪些是违规求助? 4195065
关于积分的说明 13030178
捐赠科研通 3966775
什么是DOI,文献DOI怎么找? 2174275
邀请新用户注册赠送积分活动 1191665
关于科研通互助平台的介绍 1101154