Nikita M. Kondratiev,Ramzil R. Galiev,I. K. Gorelov,Artem E. Shitikov,Valery E. Lobanov
标识
DOI:10.1117/12.2621209
摘要
Realization of the coupling of the laser diode to an external reflector may provide efficient suppression of the phase noises and significant stabilization of the laser source. Locking a semiconductor laser to high-quality-factor microresonator was shown to result in a laser linewidth narrowing to sub-Hz level. The straightforward way to get better stabilization and wider locking band is to increase the feedback level. However, most of the theories used to describe the self-injection locking effect assume the weak feedback from the external reflector. Here we develop the more complete theory of the laser -- resonant reflector interaction that allows to describe this effect for the high feedback level as well. We define different possible regimes taking place at different feedback levels (including the so-called external cavity laser regime) and study applicability domains of the previous and proposed models. We show that existing model of the self-injection locking to whispering-gallery mode resonator is a consequence of the considered model in the low-feedback regime. Finally, we check the model in high-feedback limit experimentally and show a good correspondence with the theory.