Tire Contact Force Equations for Vision-Based Vehicle Weight Identification

卡车 偏转(物理) 接触片 偏角 鉴定(生物学) 汽车工程 计算机科学 接触力 工程类 天然橡胶 量子力学 生物 光学 物理 有机化学 化学 植物
作者
Xuan Kong,Tengyi Wang,Jie Zhang,Lu Deng,Jiwei Zhong,Yuping Cui,Shudong Xia
出处
期刊:Applied sciences [MDPI AG]
卷期号:12 (9): 4487-4487 被引量:11
标识
DOI:10.3390/app12094487
摘要

Overloaded vehicles have a variety of adverse effects; they not only damage pavements, bridges, and other infrastructure but also threaten the safety of human life. Therefore, it is necessary to address the problem of overloading, and this requires the accurate identification of the vehicle weight. Many methods have been used to identify vehicle weights. Most of them use contact methods that require sensors attached to or embedded in the road or bridge, which have disadvantages such as high cost, low accuracy, and poor durability. The authors have developed a vehicle weight identification method based on computer vision. The methodology identifies the tire–road contact force by establishing the relationship using the tire vertical deflection, which is extracted using computer vision techniques from the tire image. The focus of the present paper is to study the tire–road contact mechanism and develop tire contact force equations. Theoretical derivations and numerical simulations were conducted first to establish the tire force–deformation equations. The proposed vision-based vehicle weight identification method was then validated with field experiments using two passenger cars and two trucks. The effects of different tire specifications, loads, and inflation pressures were studied as well. The experiment showed that the results predicted by the proposed method agreed well with the measured results. Compared with the traditional method, the developed method based on tire mechanics and computer vision has the advantages of high accuracy and efficiency, easy operation, low cost, and there is no need to lay out sensors; thus, it provides a new approach to vehicle weighing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
彩色傲柏发布了新的文献求助10
2秒前
monere应助wsl采纳,获得10
3秒前
4秒前
哈啰完成签到,获得积分10
4秒前
华仔应助火星上的问安采纳,获得10
5秒前
5秒前
5秒前
张演基发布了新的文献求助10
5秒前
NexusExplorer应助甜甜的寒安采纳,获得10
6秒前
6秒前
浮流少年完成签到,获得积分10
6秒前
传统的凝天完成签到 ,获得积分10
7秒前
sihanzhiyu完成签到,获得积分20
7秒前
8秒前
8秒前
烟花应助平淡小猫采纳,获得10
9秒前
所所应助不安的青荷采纳,获得10
10秒前
10秒前
10秒前
sihanzhiyu发布了新的文献求助30
10秒前
xiaoyi发布了新的文献求助10
10秒前
小明完成签到,获得积分10
11秒前
李爱国应助le采纳,获得30
11秒前
Ava应助刻苦的安白采纳,获得10
11秒前
12秒前
Akim应助lin采纳,获得50
13秒前
周周发布了新的文献求助10
13秒前
感动归尘应助Fiona采纳,获得10
14秒前
Tiger完成签到,获得积分20
14秒前
小小白菜呀完成签到,获得积分10
14秒前
奈文摩尔发布了新的文献求助10
15秒前
绺妙发布了新的文献求助10
16秒前
17秒前
莫不静好发布了新的文献求助10
18秒前
stuffmatter完成签到,获得积分0
18秒前
英姑应助zzn采纳,获得10
19秒前
一个小菜鸡完成签到,获得积分10
19秒前
周周完成签到,获得积分10
21秒前
22秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240388
求助须知:如何正确求助?哪些是违规求助? 2885254
关于积分的说明 8237739
捐赠科研通 2553584
什么是DOI,文献DOI怎么找? 1381724
科研通“疑难数据库(出版商)”最低求助积分说明 649325
邀请新用户注册赠送积分活动 625009