清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tire Contact Force Equations for Vision-Based Vehicle Weight Identification

卡车 偏转(物理) 接触片 偏角 鉴定(生物学) 汽车工程 计算机科学 接触力 工程类 天然橡胶 量子力学 生物 光学 物理 有机化学 化学 植物
作者
Xuan Kong,Tengyi Wang,Jie Zhang,Lu Deng,Jiwei Zhong,Yuping Cui,Shudong Xia
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 4487-4487 被引量:11
标识
DOI:10.3390/app12094487
摘要

Overloaded vehicles have a variety of adverse effects; they not only damage pavements, bridges, and other infrastructure but also threaten the safety of human life. Therefore, it is necessary to address the problem of overloading, and this requires the accurate identification of the vehicle weight. Many methods have been used to identify vehicle weights. Most of them use contact methods that require sensors attached to or embedded in the road or bridge, which have disadvantages such as high cost, low accuracy, and poor durability. The authors have developed a vehicle weight identification method based on computer vision. The methodology identifies the tire–road contact force by establishing the relationship using the tire vertical deflection, which is extracted using computer vision techniques from the tire image. The focus of the present paper is to study the tire–road contact mechanism and develop tire contact force equations. Theoretical derivations and numerical simulations were conducted first to establish the tire force–deformation equations. The proposed vision-based vehicle weight identification method was then validated with field experiments using two passenger cars and two trucks. The effects of different tire specifications, loads, and inflation pressures were studied as well. The experiment showed that the results predicted by the proposed method agreed well with the measured results. Compared with the traditional method, the developed method based on tire mechanics and computer vision has the advantages of high accuracy and efficiency, easy operation, low cost, and there is no need to lay out sensors; thus, it provides a new approach to vehicle weighing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰应助fanniezhao采纳,获得30
2秒前
123发布了新的文献求助10
15秒前
科研通AI5应助123采纳,获得10
23秒前
激动的似狮完成签到,获得积分10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
GPTea应助科研通管家采纳,获得150
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
GPTea应助科研通管家采纳,获得150
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Fairy完成签到,获得积分10
2分钟前
Frank完成签到,获得积分10
2分钟前
火星的雪完成签到 ,获得积分0
2分钟前
脑洞疼应助xuan2022采纳,获得10
2分钟前
3分钟前
Kevin发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
白面包不吃鱼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ddd发布了新的文献求助10
4分钟前
Ji发布了新的文献求助30
4分钟前
月军完成签到 ,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
桥西小河完成签到 ,获得积分10
5分钟前
qingshuizhiche完成签到,获得积分10
6分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
ceeray23应助科研通管家采纳,获得10
7分钟前
科研通AI5应助张家源采纳,获得10
7分钟前
8分钟前
xuan2022发布了新的文献求助10
8分钟前
8分钟前
biubiu完成签到,获得积分10
8分钟前
biubiu发布了新的文献求助10
8分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5187204
求助须知:如何正确求助?哪些是违规求助? 4372086
关于积分的说明 13612872
捐赠科研通 4224995
什么是DOI,文献DOI怎么找? 2317321
邀请新用户注册赠送积分活动 1315975
关于科研通互助平台的介绍 1265421