Novel “resect and analysis” approach for T2 colorectal cancer with use of artificial intelligence

医学 接收机工作特性 结直肠癌 癌胚抗原 置信区间 阶段(地层学) 结肠切除术 淋巴结 淋巴血管侵犯 癌症 外科 放射科 转移 内科学 古生物学 生物
作者
Katsuro Ichimasa,Kenta Nakahara,Shin‐ei Kudo,Masashi Misawa,Michael Bretthauer,Shoji Shimada,Yusuke Takehara,Shunpei Mukai,Yuta Kouyama,Hideyuki Miyachi,Naruhiko Sawada,Kensaku Mori,Fumio Ishida,Yuichi Mori
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:96 (4): 665-672.e1 被引量:29
标识
DOI:10.1016/j.gie.2022.04.1305
摘要

Because of a lack of reliable preoperative prediction of lymph node involvement in early-stage T2 colorectal cancer (CRC), surgical resection is the current standard treatment. This leads to overtreatment because only 25% of T2 CRC patients turn out to have lymph node metastasis (LNM). We assessed a novel artificial intelligence (AI) system to predict LNM in T2 CRC to ascertain patients who can be safely treated with less-invasive endoscopic resection such as endoscopic full-thickness resection and do not need surgery.We included 511 consecutive patients who had surgical resection with T2 CRC from 2001 to 2016; 411 patients (2001-2014) were used as a training set for the random forest-based AI prediction tool, and 100 patients (2014-2016) were used to validate the AI tool performance. The AI algorithm included 8 clinicopathologic variables (patient age and sex, tumor size and location, lymphatic invasion, vascular invasion, histologic differentiation, and serum carcinoembryonic antigen level) and predicted the likelihood of LNM by receiver-operating characteristics using area under the curve (AUC) estimates.Rates of LNM in the training and validation datasets were 26% (106/411) and 28% (28/100), respectively. The AUC of the AI algorithm for the validation cohort was .93. With 96% sensitivity (95% confidence interval, 90%-99%), specificity was 88% (95% confidence interval, 80%-94%). In this case, 64% of patients could avoid surgery, whereas 1.6% of patients with LNM would lose a chance to receive surgery.Our proposed AI prediction model has a potential to reduce unnecessary surgery for patients with T2 CRC with very little risk. (Clinical trial registration number: UMIN 000038257.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
山野发布了新的文献求助20
2秒前
lyh发布了新的文献求助10
3秒前
prettymud发布了新的文献求助10
4秒前
完美世界应助YYY采纳,获得30
4秒前
倦梦还完成签到,获得积分10
6秒前
7秒前
7秒前
赘婿应助刘佳鑫采纳,获得10
8秒前
flawless完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助150
11秒前
大狒狒发布了新的文献求助10
12秒前
shunshun51213完成签到,获得积分10
13秒前
Song发布了新的文献求助10
13秒前
13秒前
15秒前
15秒前
丘比特应助茉莉采纳,获得10
16秒前
单薄飞莲完成签到,获得积分10
19秒前
春风发布了新的文献求助10
19秒前
YYY发布了新的文献求助30
20秒前
Akim应助娃哈哈采纳,获得10
20秒前
22秒前
23秒前
25秒前
JINWEIJIANG完成签到,获得积分10
27秒前
27秒前
28秒前
LIN完成签到,获得积分10
28秒前
29秒前
JINWEIJIANG发布了新的文献求助10
30秒前
小钟小钟发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
追寻荔枝发布了新的文献求助10
33秒前
桐桐应助CCCC采纳,获得10
34秒前
NexusExplorer应助想去hk采纳,获得10
34秒前
幽默的老师完成签到,获得积分20
35秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
小蘑菇应助科研通管家采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5124206
求助须知:如何正确求助?哪些是违规求助? 4328520
关于积分的说明 13487475
捐赠科研通 4162916
什么是DOI,文献DOI怎么找? 2281925
邀请新用户注册赠送积分活动 1283217
关于科研通互助平台的介绍 1222406