Novel “resect and analysis” approach for T2 colorectal cancer with use of artificial intelligence

医学 接收机工作特性 结直肠癌 癌胚抗原 置信区间 阶段(地层学) 结肠切除术 淋巴结 淋巴血管侵犯 癌症 外科 放射科 转移 内科学 古生物学 生物
作者
Katsuro Ichimasa,Kenta Nakahara,Shin‐ei Kudo,Masashi Misawa,Michael Bretthauer,Shoji Shimada,Yusuke Takehara,Shunpei Mukai,Yuta Kouyama,Hideyuki Miyachi,Naruhiko Sawada,Kensaku Mori,Fumio Ishida,Yuichi Mori
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:96 (4): 665-672.e1 被引量:29
标识
DOI:10.1016/j.gie.2022.04.1305
摘要

Because of a lack of reliable preoperative prediction of lymph node involvement in early-stage T2 colorectal cancer (CRC), surgical resection is the current standard treatment. This leads to overtreatment because only 25% of T2 CRC patients turn out to have lymph node metastasis (LNM). We assessed a novel artificial intelligence (AI) system to predict LNM in T2 CRC to ascertain patients who can be safely treated with less-invasive endoscopic resection such as endoscopic full-thickness resection and do not need surgery.We included 511 consecutive patients who had surgical resection with T2 CRC from 2001 to 2016; 411 patients (2001-2014) were used as a training set for the random forest-based AI prediction tool, and 100 patients (2014-2016) were used to validate the AI tool performance. The AI algorithm included 8 clinicopathologic variables (patient age and sex, tumor size and location, lymphatic invasion, vascular invasion, histologic differentiation, and serum carcinoembryonic antigen level) and predicted the likelihood of LNM by receiver-operating characteristics using area under the curve (AUC) estimates.Rates of LNM in the training and validation datasets were 26% (106/411) and 28% (28/100), respectively. The AUC of the AI algorithm for the validation cohort was .93. With 96% sensitivity (95% confidence interval, 90%-99%), specificity was 88% (95% confidence interval, 80%-94%). In this case, 64% of patients could avoid surgery, whereas 1.6% of patients with LNM would lose a chance to receive surgery.Our proposed AI prediction model has a potential to reduce unnecessary surgery for patients with T2 CRC with very little risk. (Clinical trial registration number: UMIN 000038257.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大书桃完成签到,获得积分10
刚刚
ppp发布了新的文献求助10
1秒前
1秒前
我是老大应助喜悦发卡采纳,获得10
1秒前
在水一方应助怡然之玉采纳,获得10
1秒前
2秒前
zhouzhou完成签到,获得积分10
2秒前
汉堡包应助夏cai采纳,获得10
4秒前
杨德凯完成签到,获得积分10
4秒前
4秒前
健壮鸡翅完成签到,获得积分10
4秒前
4秒前
科研通AI6应助无限灵竹采纳,获得10
5秒前
5秒前
清爽的青丝完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
斯文败类应助懵懂的采梦采纳,获得30
7秒前
7秒前
赘婿应助LNE采纳,获得10
8秒前
彭于晏应助小玉采纳,获得10
9秒前
zm完成签到,获得积分10
9秒前
哈哈酱发布了新的文献求助10
9秒前
mmmm完成签到,获得积分20
10秒前
cc完成签到 ,获得积分10
10秒前
kaiqiang完成签到,获得积分20
10秒前
自由友容发布了新的文献求助10
11秒前
核潜艇很优秀应助abdu采纳,获得30
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
无聊的万天完成签到,获得积分10
12秒前
13秒前
殷少华发布了新的文献求助10
13秒前
13秒前
天天快乐应助汪宇采纳,获得10
14秒前
16秒前
sgt发布了新的文献求助10
16秒前
moon完成签到,获得积分10
17秒前
17秒前
17秒前
小蘑菇应助赶路人采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709188
求助须知:如何正确求助?哪些是违规求助? 5193261
关于积分的说明 15256131
捐赠科研通 4861993
什么是DOI,文献DOI怎么找? 2609827
邀请新用户注册赠送积分活动 1560233
关于科研通互助平台的介绍 1517986