亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Novel “resect and analysis” approach for T2 colorectal cancer with use of artificial intelligence

医学 接收机工作特性 结直肠癌 癌胚抗原 置信区间 阶段(地层学) 结肠切除术 淋巴结 淋巴血管侵犯 癌症 外科 放射科 转移 内科学 古生物学 生物
作者
Katsuro Ichimasa,Kenta Nakahara,Shin‐ei Kudo,Masashi Misawa,Michael Bretthauer,Shoji Shimada,Yusuke Takehara,Shunpei Mukai,Yuta Kouyama,Hideyuki Miyachi,Naruhiko Sawada,Kensaku Mori,Fumio Ishida,Yuichi Mori
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:96 (4): 665-672.e1 被引量:29
标识
DOI:10.1016/j.gie.2022.04.1305
摘要

Because of a lack of reliable preoperative prediction of lymph node involvement in early-stage T2 colorectal cancer (CRC), surgical resection is the current standard treatment. This leads to overtreatment because only 25% of T2 CRC patients turn out to have lymph node metastasis (LNM). We assessed a novel artificial intelligence (AI) system to predict LNM in T2 CRC to ascertain patients who can be safely treated with less-invasive endoscopic resection such as endoscopic full-thickness resection and do not need surgery.We included 511 consecutive patients who had surgical resection with T2 CRC from 2001 to 2016; 411 patients (2001-2014) were used as a training set for the random forest-based AI prediction tool, and 100 patients (2014-2016) were used to validate the AI tool performance. The AI algorithm included 8 clinicopathologic variables (patient age and sex, tumor size and location, lymphatic invasion, vascular invasion, histologic differentiation, and serum carcinoembryonic antigen level) and predicted the likelihood of LNM by receiver-operating characteristics using area under the curve (AUC) estimates.Rates of LNM in the training and validation datasets were 26% (106/411) and 28% (28/100), respectively. The AUC of the AI algorithm for the validation cohort was .93. With 96% sensitivity (95% confidence interval, 90%-99%), specificity was 88% (95% confidence interval, 80%-94%). In this case, 64% of patients could avoid surgery, whereas 1.6% of patients with LNM would lose a chance to receive surgery.Our proposed AI prediction model has a potential to reduce unnecessary surgery for patients with T2 CRC with very little risk. (Clinical trial registration number: UMIN 000038257.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助黑神白了采纳,获得20
2秒前
11秒前
Tanya完成签到 ,获得积分10
13秒前
卢雨生发布了新的文献求助10
16秒前
18秒前
今后应助跳跃的愫采纳,获得10
30秒前
38秒前
38秒前
npknpk发布了新的文献求助10
44秒前
Algernoon发布了新的文献求助10
46秒前
50秒前
SciGPT应助npknpk采纳,获得10
57秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
YifanWang应助科研通管家采纳,获得30
1分钟前
1分钟前
田田完成签到 ,获得积分10
1分钟前
npknpk完成签到,获得积分20
1分钟前
Algernoon完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
跳跃的愫发布了新的文献求助10
1分钟前
sys549发布了新的文献求助10
1分钟前
1分钟前
科研通AI6.1应助utopia采纳,获得10
1分钟前
Magic麦发布了新的文献求助10
1分钟前
1分钟前
1分钟前
bzlish发布了新的文献求助10
1分钟前
黑神白了发布了新的文献求助20
1分钟前
科目三应助bzlish采纳,获得10
1分钟前
bzlish完成签到,获得积分10
1分钟前
1分钟前
1分钟前
utopia发布了新的文献求助10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642