亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic network biomarker analysis and system pharmacology methods to explore the therapeutic effects and targets of Xiaoyaosan against liver cirrhosis

肝硬化 医学 生物标志物 肝病 药理学 生物信息学 癌症研究 肿瘤科 内科学 生物 遗传学
作者
Yi-Yu Lu,Meiyi Li,Qianmei Zhou,Dongdong Fang,Rong Wu,Qingya Li,Luonan Chen,Shibing Su
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:294: 115324-115324 被引量:6
标识
DOI:10.1016/j.jep.2022.115324
摘要

Xiaoyaosan is a traditional Chinese herbal formula that has long been used to treat liver cirrhosis, liver failure, and hepatocarcinoma (HCC). However, little is known about its mechanism of action and targets in treating chronic liver disease.This study aimed to detect the critical transition of HCC progression and to explore the regulatory mechanism and targets of Xiaoyaosan treating liver cirrhosis (cirrhosis) using integrative medicinal research involving system biology and pharmacology.We recruited chronic liver disease participants to obtain gene expression data and applied the dynamic network biomarker (DNB) method to identify molecular markers and the critical transition. We combined network pharmacology and DNB analysis to locate the potential DNBs (targets). Then we validated the DNBs in the liver cirrhosis rat models using Xiaoyaosan treatment. The expression of genes encoding the four DNBs, including Cebpa, Csf1, Egfr, and Il7r, were further validated in rat liver tissue using Western blot analysis.We found EGFR, CEBPA, Csf1, Ccnb1, Rrmm2, C3, Il7r, Ccna2, and Peg10 overlap in the DNB list and Xiaoyaosan-Target-Disease (XTD) network constructed using network pharmacology databases. We investigated the diagnostic ability of each member in the DNB cluster and found EGFR, CEBPA, CSF1, and IL7R had high diagnostic abilities with AUC >0.7 and P-value < 0.05. We validated these findings in rats and found that liver function improved significantly and fibrotic changes were relieved in the Xiaoyaosan treatment group. The expression levels of CSF1 and IL7R in the Xiaoyaosan group were significantly lower than those in the cirrhosis model group. In contrast, CEBPA expression in the Xiaoyaosan group was significantly higher than that in the cirrhosis model group. The expression of EGFR in the Xiaoyaosan group was slightly decreased than in the model group but not significantly.Using the DNB method and network pharmacology approach, this study revealed that CEBPA, IL7R, EGFR, and CSF1 expression was remarkably altered in chronic liver disease and thus, may play an important role in driving the progression of cirrhosis. Therefore, CEBPA, IL7R, EGFR, and CSF1 may be important targets of Xiaoyaosan in treating cirrhosis and can be considered for developing novel therapeutics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千里草完成签到,获得积分10
5秒前
英俊的铭应助transtalent采纳,获得10
11秒前
开山怪猫猫完成签到,获得积分10
1分钟前
1分钟前
JamesPei应助outlast采纳,获得20
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
outlast发布了新的文献求助20
1分钟前
健康的大船完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
风趣的靖雁完成签到 ,获得积分10
2分钟前
卤蛋长不高完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
醉熏的灵完成签到 ,获得积分10
4分钟前
丘比特应助Omni采纳,获得10
5分钟前
5分钟前
一行白鹭完成签到,获得积分20
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
一行白鹭发布了新的文献求助10
5分钟前
5分钟前
6分钟前
jia完成签到 ,获得积分10
6分钟前
z掌握一下完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
一二完成签到 ,获得积分10
7分钟前
7分钟前
ZW发布了新的文献求助10
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
慕青应助科研通管家采纳,获得10
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
9分钟前
9分钟前
会撒娇的定帮完成签到 ,获得积分10
9分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015106
求助须知:如何正确求助?哪些是违规求助? 3555062
关于积分的说明 11317842
捐赠科研通 3288562
什么是DOI,文献DOI怎么找? 1812266
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983