Real-Time Self-Supervised Monocular Depth Estimation Without GPU

计算机科学 深度学习 推论 单眼 人工智能 符号 集合(抽象数据类型) 图像(数学) 姿势 计算机工程 机器学习 程序设计语言 数学 算术
作者
Matteo Poggi,Fabio Tosi,Filippo Aleotti,Stefano Mattoccia
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 17342-17353 被引量:10
标识
DOI:10.1109/tits.2022.3157265
摘要

Single-image depth estimation represents a longstanding challenge in computer vision and although it is an ill-posed problem, deep learning enabled astonishing results leveraging both supervised and self-supervised training paradigms. State-of-the-art solutions achieve remarkably accurate depth estimation from a single image deploying huge deep architectures, requiring powerful dedicated hardware to run in a reasonable amount of time. This overly demanding complexity makes them unsuited for a broad category of applications requiring devices with constrained resources or memory consumption. To tackle this issue, in this paper a family of compact, yet effective CNNs for monocular depth estimation is proposed, by leveraging self-supervision from a binocular stereo rig. Our lightweight architectures, namely PyD-Net and PyD-Net2, compared to complex state-of-the-art trade a small drop in accuracy to drastically reduce the runtime and memory requirements by a factor ranging from $2\times $ to $100\times $ . Moreover, our networks can run real-time monocular depth estimation on a broad set of embedded or consumer devices, even not equipped with a GPU, by early stopping the inference with negligible (or no) loss in accuracy, making it ideally suited for real applications with strict constraints on hardware resources or power consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季生完成签到,获得积分10
1秒前
徐徐完成签到,获得积分10
1秒前
2秒前
2秒前
haku完成签到,获得积分10
4秒前
可爱的函函应助laodie采纳,获得10
6秒前
Singularity应助忆楠采纳,获得10
7秒前
8秒前
请叫我风吹麦浪应助PengHu采纳,获得30
9秒前
jjjjjj完成签到,获得积分10
9秒前
凝子老师发布了新的文献求助10
11秒前
11秒前
橙子fy16_发布了新的文献求助10
13秒前
cookie完成签到,获得积分10
13秒前
柒柒的小熊完成签到,获得积分10
14秒前
14秒前
Hello应助萌之痴痴采纳,获得10
15秒前
hahaer完成签到,获得积分10
17秒前
领导范儿应助失眠虔纹采纳,获得10
18秒前
19秒前
Owen应助凝子老师采纳,获得10
22秒前
22秒前
南宫炽滔完成签到 ,获得积分10
24秒前
24秒前
丘比特应助飞羽采纳,获得10
25秒前
沙拉发布了新的文献求助10
25秒前
26秒前
27秒前
椰子糖完成签到 ,获得积分10
28秒前
28秒前
ZHU完成签到,获得积分10
29秒前
阳阳发布了新的文献求助10
30秒前
Raymond应助雪山飞龙采纳,获得10
30秒前
kk发布了新的文献求助10
31秒前
31秒前
32秒前
32秒前
32秒前
33秒前
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849