多转子
模型预测控制
卡尔曼滤波器
控制理论(社会学)
执行机构
扩展卡尔曼滤波器
容错
计算机科学
故障检测与隔离
断层(地质)
控制工程
工程类
控制(管理)
人工智能
航空航天工程
分布式计算
地震学
地质学
作者
Emil Lykke Diget,Agus Hasan,Poramate Manoonpong
标识
DOI:10.23919/acc53348.2022.9867240
摘要
This paper presents a method for advanced fault-tolerant control (FTC) of multirotor unmanned aerial vehicles (UAVs), which includes anomaly detection on sensor measurements, fault estimation on actuators, and a robust model predictive control (MPC). To detect anomalies on the sensor measurements, an Echo State Network is used. System states and faults are estimated using an adaptive extended Kalman filter. The system is further controlled using MPC. The method is tested in numerical simulations with a hexacopter dynamic model. Simulation results show the ability of the FTC to handle failure with different even and uneven actuator faults.
科研通智能强力驱动
Strongly Powered by AbleSci AI