Petri net transition times as training features for multiclass models to support the detection of neurodegenerative diseases

可解释性 随机森林 Petri网 肌萎缩侧索硬化 步态 人工智能 计算机科学 集合(抽象数据类型) 过渡(遗传学) 训练集 模式识别(心理学) 班级(哲学) 生物 疾病 医学 病理 物理医学与康复 算法 生物化学 基因 程序设计语言
作者
Cristian Tobar,Carlos Felipe Rengifo Rodas,Mariela Muñoz-Añasco
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (6): 065001-065001 被引量:2
标识
DOI:10.1088/2057-1976/ac8c9a
摘要

This paper proposes the transition times of Petri net models of human gait as training features for multiclass random forests (RFs) and classification trees (CTs). These models are designed to support screening for neurodegenerative diseases. The proposed Petri net describes gait in terms of nine cyclic phases and the timing of the nine events that mark the transition between phases. Since the transition times between strides vary, each is represented as a random variable characterized by its mean and standard deviation. These transition times are calculated using the PhysioNet database of vertical ground reaction forces (VGRFs) generated by feet-ground contact. This database comprises the VGRFs of four groups: amyotrophic lateral sclerosis, the control group, Huntington's disease, and Parkinson disease. The RF produced an overall classification accuracy of 91%, and the specificities and sensitivities for each class were between 80% and 100%. However, despite this high performance, the RF-generated models demonstrated lack of interpretability prompted the training of a CT using identical features. The obtained tree comprised only four features and required a maximum of three comparisons. However, this simplification dramatically reduced the overall accuracy from 90.6% to 62.3%. The proposed set features were compared with those included in PhysioNet database of VGRFs. In terms of both the RF and CT, more accurate models were established using our features than those of the PhysioNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安qaq完成签到 ,获得积分10
刚刚
河马卡卡完成签到,获得积分10
1秒前
冯冯发布了新的文献求助10
2秒前
2秒前
自然的小珍给自然的小珍的求助进行了留言
2秒前
2秒前
Ecrho完成签到,获得积分10
3秒前
eee完成签到 ,获得积分10
3秒前
塵亦发布了新的文献求助10
3秒前
爆米花应助阿飞采纳,获得10
3秒前
typhoon发布了新的文献求助10
4秒前
烟雨醉巷发布了新的文献求助10
4秒前
杳鸢应助amanda采纳,获得20
6秒前
7秒前
霍华淞发布了新的文献求助30
7秒前
烤鸭完成签到 ,获得积分10
8秒前
王几几完成签到,获得积分10
9秒前
ma应助123采纳,获得10
9秒前
10秒前
王几几发布了新的文献求助10
12秒前
wan织发布了新的文献求助10
12秒前
小余同学发布了新的文献求助10
14秒前
大模型应助typhoon采纳,获得10
16秒前
17秒前
MaoTing发布了新的文献求助10
18秒前
18秒前
19秒前
烟雨醉巷发布了新的文献求助10
20秒前
万能图书馆应助alim采纳,获得10
21秒前
zion0326发布了新的文献求助10
22秒前
didoo发布了新的文献求助10
22秒前
23秒前
HEIKU应助霍华淞采纳,获得20
23秒前
23秒前
25秒前
哆啦A梦发布了新的文献求助10
25秒前
trh发布了新的文献求助10
25秒前
Esfec完成签到,获得积分10
26秒前
文章发的多多的完成签到,获得积分10
27秒前
Esfec发布了新的文献求助10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244424
求助须知:如何正确求助?哪些是违规求助? 2888070
关于积分的说明 8251272
捐赠科研通 2556542
什么是DOI,文献DOI怎么找? 1385033
科研通“疑难数据库(出版商)”最低求助积分说明 649958
邀请新用户注册赠送积分活动 626054