亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Petri net transition times as training features for multiclass models to support the detection of neurodegenerative diseases

可解释性 随机森林 Petri网 肌萎缩侧索硬化 步态 人工智能 计算机科学 集合(抽象数据类型) 过渡(遗传学) 训练集 模式识别(心理学) 班级(哲学) 生物 疾病 医学 病理 物理医学与康复 算法 生物化学 基因 程序设计语言
作者
Cristian Tobar,Carlos Felipe Rengifo Rodas,Mariela Muñoz-Añasco
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (6): 065001-065001 被引量:2
标识
DOI:10.1088/2057-1976/ac8c9a
摘要

This paper proposes the transition times of Petri net models of human gait as training features for multiclass random forests (RFs) and classification trees (CTs). These models are designed to support screening for neurodegenerative diseases. The proposed Petri net describes gait in terms of nine cyclic phases and the timing of the nine events that mark the transition between phases. Since the transition times between strides vary, each is represented as a random variable characterized by its mean and standard deviation. These transition times are calculated using the PhysioNet database of vertical ground reaction forces (VGRFs) generated by feet-ground contact. This database comprises the VGRFs of four groups: amyotrophic lateral sclerosis, the control group, Huntington's disease, and Parkinson disease. The RF produced an overall classification accuracy of 91%, and the specificities and sensitivities for each class were between 80% and 100%. However, despite this high performance, the RF-generated models demonstrated lack of interpretability prompted the training of a CT using identical features. The obtained tree comprised only four features and required a maximum of three comparisons. However, this simplification dramatically reduced the overall accuracy from 90.6% to 62.3%. The proposed set features were compared with those included in PhysioNet database of VGRFs. In terms of both the RF and CT, more accurate models were established using our features than those of the PhysioNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想听水星记完成签到,获得积分10
1秒前
wllllll发布了新的文献求助10
7秒前
SSY发布了新的文献求助10
9秒前
挚智完成签到 ,获得积分10
14秒前
15秒前
15秒前
唐尼医生完成签到,获得积分20
15秒前
唐尼医生发布了新的文献求助10
24秒前
天天快乐应助SSY采纳,获得10
24秒前
cenghao完成签到,获得积分0
25秒前
冷艳的孤晴完成签到,获得积分10
30秒前
慕青应助一只西瓜茶采纳,获得30
31秒前
overThat完成签到,获得积分10
33秒前
40秒前
43秒前
幽默的友容完成签到,获得积分10
44秒前
49秒前
英姑应助科研通管家采纳,获得10
50秒前
morena应助科研通管家采纳,获得10
50秒前
50秒前
50秒前
50秒前
英姑应助科研通管家采纳,获得10
50秒前
morena应助科研通管家采纳,获得10
50秒前
50秒前
打打应助碎碎采纳,获得10
51秒前
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
mi发布了新的文献求助10
1分钟前
1分钟前
Dietetykza5zl应助车访枫采纳,获得10
1分钟前
疯狂老登发布了新的文献求助10
1分钟前
香蕉觅云应助疯狂老登采纳,获得10
1分钟前
xdmhv完成签到 ,获得积分10
1分钟前
ding应助mi采纳,获得10
2分钟前
科研通AI2S应助内向的绿采纳,获得10
2分钟前
yy完成签到 ,获得积分10
2分钟前
2分钟前
aaa完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788249
求助须知:如何正确求助?哪些是违规求助? 5705679
关于积分的说明 15473340
捐赠科研通 4916347
什么是DOI,文献DOI怎么找? 2646310
邀请新用户注册赠送积分活动 1593966
关于科研通互助平台的介绍 1548346