Petri net transition times as training features for multiclass models to support the detection of neurodegenerative diseases

可解释性 随机森林 Petri网 肌萎缩侧索硬化 步态 人工智能 计算机科学 集合(抽象数据类型) 过渡(遗传学) 训练集 模式识别(心理学) 班级(哲学) 生物 疾病 医学 病理 物理医学与康复 算法 生物化学 基因 程序设计语言
作者
Cristian Tobar,Carlos Felipe Rengifo Rodas,Mariela Muñoz-Añasco
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:8 (6): 065001-065001 被引量:2
标识
DOI:10.1088/2057-1976/ac8c9a
摘要

This paper proposes the transition times of Petri net models of human gait as training features for multiclass random forests (RFs) and classification trees (CTs). These models are designed to support screening for neurodegenerative diseases. The proposed Petri net describes gait in terms of nine cyclic phases and the timing of the nine events that mark the transition between phases. Since the transition times between strides vary, each is represented as a random variable characterized by its mean and standard deviation. These transition times are calculated using the PhysioNet database of vertical ground reaction forces (VGRFs) generated by feet-ground contact. This database comprises the VGRFs of four groups: amyotrophic lateral sclerosis, the control group, Huntington's disease, and Parkinson disease. The RF produced an overall classification accuracy of 91%, and the specificities and sensitivities for each class were between 80% and 100%. However, despite this high performance, the RF-generated models demonstrated lack of interpretability prompted the training of a CT using identical features. The obtained tree comprised only four features and required a maximum of three comparisons. However, this simplification dramatically reduced the overall accuracy from 90.6% to 62.3%. The proposed set features were compared with those included in PhysioNet database of VGRFs. In terms of both the RF and CT, more accurate models were established using our features than those of the PhysioNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
codecow完成签到,获得积分10
1秒前
拼搏听寒发布了新的文献求助10
1秒前
2秒前
英俊的铭应助小鱼游游游采纳,获得10
2秒前
2秒前
单纯问寒发布了新的文献求助10
2秒前
翻斗花园612完成签到,获得积分10
2秒前
codecow发布了新的文献求助10
4秒前
4秒前
星辰大海应助静好采纳,获得10
4秒前
hhh发布了新的文献求助10
4秒前
5秒前
加菲发布了新的文献求助10
5秒前
完美世界应助馋酒的小猫采纳,获得10
5秒前
在九月发布了新的文献求助10
6秒前
joker发布了新的文献求助10
7秒前
何嘉辰发布了新的文献求助10
7秒前
7秒前
123345完成签到,获得积分10
7秒前
8秒前
能干的花生完成签到,获得积分10
8秒前
8秒前
小田心完成签到,获得积分10
9秒前
文二目分完成签到 ,获得积分10
9秒前
袁寒烟完成签到,获得积分10
10秒前
10秒前
跳跃的迎荷完成签到 ,获得积分10
11秒前
zzx发布了新的文献求助10
11秒前
lxz完成签到,获得积分10
11秒前
11秒前
夏明明完成签到,获得积分10
12秒前
小田心发布了新的文献求助10
12秒前
fireking_sid完成签到,获得积分10
13秒前
13秒前
右声道发布了新的文献求助10
13秒前
在九月完成签到,获得积分10
14秒前
14秒前
yaohuang完成签到,获得积分10
15秒前
WWY发布了新的文献求助10
15秒前
鱼0306完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128