GCM: Efficient video recognition with glance and combine module

计算机科学 块(置换群论) 人工智能 计算 RGB颜色模型 模式识别(心理学) 卷积神经网络 动作识别 算法 几何学 数学 班级(哲学)
作者
Yichen Zhou,Ziyuan Huang,Xulei Yang,Marcelo H. Ang,Teck Khim Ng
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:133: 108970-108970 被引量:5
标识
DOI:10.1016/j.patcog.2022.108970
摘要

In this work, we present an efficient and powerful building block for video action recognition, dubbed Glance and Combine Module (GCM). In order to obtain a broader perspective of the video features, GCM introduces an extra glancing operation with a larger receptive field over both the spatial and temporal dimensions, and combines features with different receptive fields for further processing. We show in our ablation studies that the proposed GCM is much more efficient than other forms of 3D spatio-temporal convolutional blocks. We build a series of GCM networks by stacking GCM repeatedly, and train them from scratch on the target datasets directly. On the Kinetics-400 dataset which focuses more on appearance rather than action, our GCM networks can achieve similar accuracy as others without pre-training on ImageNet. For the more action-centric recognition datasets such as Something-Something (V1 & V2) and Multi-Moments in Time, the GCM networks achieve state-of-the-art performance with less than two thirds the computational complexity of other models. With only 19.2 GFLOPs of computation, our GCMNet15 can obtain 63.9% top-1 classification accuracy on Something-Something-V2 validation set under single-crop testing. On the fine-grained action recognition dataset FineGym, we beat the previous state-of-the-art accuracy achieved with 2-stream methods by more than 6% using only RGB input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子慢慢来完成签到,获得积分10
1秒前
称心冬云发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
鸣笛应助畅快问蕊采纳,获得10
2秒前
2秒前
3秒前
充电宝应助小卫卫采纳,获得10
3秒前
su123完成签到,获得积分10
3秒前
dlch完成签到 ,获得积分10
3秒前
罐装旺仔发布了新的文献求助10
4秒前
贰鸟应助木亢王足各采纳,获得10
4秒前
5秒前
5秒前
Foch发布了新的文献求助10
6秒前
6秒前
pluto发布了新的文献求助10
6秒前
Ava应助称心冬云采纳,获得10
6秒前
酷波er应助橙子采纳,获得10
6秒前
LUNWENREQUEST发布了新的文献求助10
7秒前
wangqinlei完成签到 ,获得积分10
7秒前
8秒前
完美世界应助zzahyc采纳,获得10
8秒前
绝对快乐完成签到,获得积分10
9秒前
Bryan应助寻悦采纳,获得10
10秒前
炼丹炉完成签到,获得积分10
10秒前
燕子完成签到 ,获得积分10
11秒前
pluto完成签到,获得积分10
11秒前
11秒前
honey发布了新的文献求助10
12秒前
Foch完成签到,获得积分10
12秒前
lalala发布了新的文献求助10
12秒前
13秒前
13秒前
绝对快乐发布了新的文献求助10
13秒前
13秒前
14秒前
李烛尘完成签到,获得积分10
14秒前
英俊的铭应助罐装旺仔采纳,获得10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020