GCM: Efficient video recognition with glance and combine module

计算机科学 块(置换群论) 人工智能 计算 RGB颜色模型 模式识别(心理学) 卷积神经网络 动作识别 算法 几何学 数学 班级(哲学)
作者
Yichen Zhou,Ziyuan Huang,Xulei Yang,Marcelo H. Ang,Teck Khim Ng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:133: 108970-108970 被引量:5
标识
DOI:10.1016/j.patcog.2022.108970
摘要

In this work, we present an efficient and powerful building block for video action recognition, dubbed Glance and Combine Module (GCM). In order to obtain a broader perspective of the video features, GCM introduces an extra glancing operation with a larger receptive field over both the spatial and temporal dimensions, and combines features with different receptive fields for further processing. We show in our ablation studies that the proposed GCM is much more efficient than other forms of 3D spatio-temporal convolutional blocks. We build a series of GCM networks by stacking GCM repeatedly, and train them from scratch on the target datasets directly. On the Kinetics-400 dataset which focuses more on appearance rather than action, our GCM networks can achieve similar accuracy as others without pre-training on ImageNet. For the more action-centric recognition datasets such as Something-Something (V1 & V2) and Multi-Moments in Time, the GCM networks achieve state-of-the-art performance with less than two thirds the computational complexity of other models. With only 19.2 GFLOPs of computation, our GCMNet15 can obtain 63.9% top-1 classification accuracy on Something-Something-V2 validation set under single-crop testing. On the fine-grained action recognition dataset FineGym, we beat the previous state-of-the-art accuracy achieved with 2-stream methods by more than 6% using only RGB input.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YOMU完成签到,获得积分10
刚刚
nhzz2023完成签到 ,获得积分0
1秒前
1097完成签到,获得积分10
1秒前
1秒前
2秒前
JamesPei应助怡然的雪柳采纳,获得10
2秒前
健忘的汲发布了新的文献求助10
3秒前
酷波er应助靓丽的明辉采纳,获得10
4秒前
啦啦啦发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助邾佳采纳,获得10
6秒前
7秒前
lulu发布了新的文献求助10
8秒前
GEeZiii完成签到,获得积分10
8秒前
妮妮完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
77完成签到 ,获得积分10
9秒前
善学以致用应助Anna采纳,获得10
9秒前
季宇完成签到,获得积分10
10秒前
11秒前
泡泡茶壶完成签到,获得积分10
11秒前
英姑应助无聊的砖家采纳,获得10
12秒前
12秒前
杨fafa完成签到 ,获得积分10
12秒前
12秒前
李益强发布了新的文献求助10
12秒前
Orange应助贪玩的笑阳采纳,获得10
13秒前
季宇发布了新的文献求助10
13秒前
14秒前
14秒前
充电宝应助向日葵采纳,获得30
14秒前
原汤完成签到,获得积分20
14秒前
lulu完成签到,获得积分20
16秒前
清逸之风完成签到 ,获得积分10
16秒前
16秒前
17秒前
谢慧蕴完成签到 ,获得积分10
17秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138178
求助须知:如何正确求助?哪些是违规求助? 2789056
关于积分的说明 7790034
捐赠科研通 2445505
什么是DOI,文献DOI怎么找? 1300440
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046