GCM: Efficient video recognition with glance and combine module

计算机科学 块(置换群论) 人工智能 计算 RGB颜色模型 模式识别(心理学) 卷积神经网络 动作识别 算法 几何学 数学 班级(哲学)
作者
Yichen Zhou,Ziyuan Huang,Xulei Yang,Marcelo H. Ang,Teck Khim Ng
出处
期刊:Pattern Recognition [Elsevier]
卷期号:133: 108970-108970 被引量:5
标识
DOI:10.1016/j.patcog.2022.108970
摘要

In this work, we present an efficient and powerful building block for video action recognition, dubbed Glance and Combine Module (GCM). In order to obtain a broader perspective of the video features, GCM introduces an extra glancing operation with a larger receptive field over both the spatial and temporal dimensions, and combines features with different receptive fields for further processing. We show in our ablation studies that the proposed GCM is much more efficient than other forms of 3D spatio-temporal convolutional blocks. We build a series of GCM networks by stacking GCM repeatedly, and train them from scratch on the target datasets directly. On the Kinetics-400 dataset which focuses more on appearance rather than action, our GCM networks can achieve similar accuracy as others without pre-training on ImageNet. For the more action-centric recognition datasets such as Something-Something (V1 & V2) and Multi-Moments in Time, the GCM networks achieve state-of-the-art performance with less than two thirds the computational complexity of other models. With only 19.2 GFLOPs of computation, our GCMNet15 can obtain 63.9% top-1 classification accuracy on Something-Something-V2 validation set under single-crop testing. On the fine-grained action recognition dataset FineGym, we beat the previous state-of-the-art accuracy achieved with 2-stream methods by more than 6% using only RGB input.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
pluto应助科研通管家采纳,获得10
1秒前
chen应助科研通管家采纳,获得10
1秒前
哇哇哇发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
浮游应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
Singularity发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
gilderf发布了新的文献求助10
3秒前
3秒前
潘鑫发布了新的文献求助10
3秒前
Xinzz完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
4秒前
bin完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
哒哒哒发布了新的文献求助10
5秒前
风趣的天奇完成签到,获得积分10
5秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
huyu完成签到 ,获得积分10
7秒前
Momomo应助读书的时候采纳,获得10
7秒前
7秒前
8秒前
ST发布了新的文献求助10
8秒前
李爱国应助好眠哈密瓜采纳,获得10
8秒前
qweqwe完成签到,获得积分10
9秒前
9秒前
9秒前
嘿嘿发布了新的文献求助10
9秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800