数学
中央歧管
分叉
代数数
应用数学
固定点
分岔理论
理论(学习稳定性)
倍周期分岔
复杂动力学
混乱的
控制理论(社会学)
数学分析
控制(管理)
霍普夫分叉
非线性系统
计算机科学
量子力学
机器学习
物理
人工智能
作者
A. M. Yousef,S. Z. Rida,Soheir Arafat,Sophia R.‐J. Jang
摘要
In this paper, we propose a host‐parasitoid model with harvest effort. The existence and stability of a positive fixed point are analyzed. The period‐doubling and Neimark–Sacker bifurcations are studied. These analyses are achieved by applying the normal form of the difference‐algebraic system, bifurcation theory, and center manifold theorem. Furthermore, we apply a state‐delayed feedback control strategy to control the complex dynamics of the proposed model. Numerical examples and simulations are given to verify our findings. Owing to the framework of Nicholson–Bailey host‐parasitoid system, the proposed difference‐algebraic model shows rich dynamics compared with the continuous‐time models.
科研通智能强力驱动
Strongly Powered by AbleSci AI