A deep learning neural network approach for predicting the factors influencing heavy-metal adsorption by clay minerals

粘土矿物 吸附 吸附 重金属 金属 环境科学 环境化学 矿物学 化学 材料科学 冶金 有机化学
作者
Rui Liu,Lei Zuo,Jiajia Zhao,Dong-ping Tao
出处
期刊:Clay Minerals [Cambridge University Press]
卷期号:57 (1): 70-76 被引量:1
标识
DOI:10.1180/clm.2022.20
摘要

Abstract The treatment of water containing heavy metals has attracted increasing attention because the ingestion of such water poses risks to human health. Due to their relatively large specific surface areas and surface charges, clay minerals play a significant role in the adsorption of heavy metals in water. However, the major factors that influence the adsorption rates of clay minerals are not well understood, and thus methods to predict the sorption of heavy metals by clay minerals are lacking. A method that can identify the most appropriate clay minerals for removal of a given heavy metal, based on the predicted sorption of the clay minerals, is required. This paper presents a widely applicable deep learning neural network approach that yielded excellent predictions of the influence of the sorption ratio on the adsorption of heavy metals by clay minerals. The neural network model was based on datasets of heavy-metal parameters that are available generally. It yielded highly accurate predictions of the adsorption rate based on training data from the dataset and was able to account for a wide range of input parameters. A Pearson sensitivity analysis was used to determine the contributions of individual input parameters to the adsorption rates predicted by the neural network. This newly developed method can predict the major factors influencing heavy-metal adsorption rates. The model described here could be applied in a wide range of scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
搬运工应助RESLR采纳,获得20
4秒前
仁仁发布了新的文献求助10
5秒前
6秒前
bckl888完成签到,获得积分10
7秒前
长心发布了新的文献求助10
7秒前
刚刚发布了新的文献求助10
8秒前
奶盖发布了新的文献求助80
8秒前
9秒前
9秒前
11秒前
科研通AI2S应助纯牛奶杀手采纳,获得10
11秒前
xiao完成签到 ,获得积分10
12秒前
13秒前
xiaoguo发布了新的文献求助10
13秒前
kawayifenm完成签到,获得积分10
14秒前
sss发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
焦星星完成签到,获得积分10
16秒前
Double_N完成签到,获得积分10
17秒前
bias完成签到,获得积分10
18秒前
仁仁完成签到,获得积分10
18秒前
路人甲发布了新的文献求助200
19秒前
19秒前
科研通AI2S应助冷静的奇迹采纳,获得10
19秒前
佘炭炭完成签到,获得积分10
21秒前
Lynn怯霜静发布了新的文献求助10
21秒前
23秒前
彭于晏应助小马儿采纳,获得10
24秒前
24秒前
FashionBoy应助奶盖采纳,获得10
25秒前
SciGPT应助蝶衣采纳,获得10
27秒前
27秒前
苏苏发布了新的文献求助20
28秒前
纯牛奶杀手给纯牛奶杀手的求助进行了留言
28秒前
Wang发布了新的文献求助10
28秒前
Lynn怯霜静完成签到,获得积分10
29秒前
xiaoguo完成签到,获得积分10
30秒前
小桃耶完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956715
求助须知:如何正确求助?哪些是违规求助? 3502823
关于积分的说明 11110134
捐赠科研通 3233745
什么是DOI,文献DOI怎么找? 1787489
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152