化学
互变异构体
碱基对
碱基
寡核苷酸
DNA
磷酰胺
脱氧腺苷
核酸
立体化学
核苷酸
底漆(化妆品)
脱氧鸟苷
脱氧核糖核酸
核苷
组合化学
生物化学
基因
有机化学
作者
Ryo Miyahara,Yosuke Taniguchi
摘要
The formation of unnatural base pairs within duplex DNA would facilitate DNA nanotechnology and biotechnology. Iso-2′-deoxyguanosine (iso-dG) forms base pairs with iso-2′-deoxycytidine, and its use as an unnatural base pair was investigated. Iso-dG is one of the tautomers of 2-hydroxy-2′-deoxyadenosine (2-OH-dA), known as an oxidatively damaged nucleobase, and its selective recognition in DNA plays an important role in the diagnosis and pathogenesis of disease. Therefore, we focused on pseudo-dC (ψdC) as a suitable molecule that recognizes 2-OH-dA in DNA. Since 2-OH-dA shows tautomeric structures in DNA, we designed and used ψdC, which also has a tautomeric structure. We successfully synthesized a ψdC phosphoramidite compound for the synthesis of oligonucleotides (ODNs) as well as its triphosphate derivative (ψdCTP). Tm measurements revealed that ODNs including ψdC showed stable base pair formation with ODNs having 2-OH-dA. In contrast, low Tm values were observed for other bases (dG, dA, dC, and T). The results obtained for the single-nucleotide primer extension reaction revealed that ψdCTP was incorporated into the complementary position of 2-OH-dA in template DNA with high selectivity. In addition, the primer elongation reaction was confirmed to proceed in the presence of dNTPs. The present study reports an artificial nucleic acid that selectively and stably forms unnatural base pairs with 2-OH-dA in DNA.
科研通智能强力驱动
Strongly Powered by AbleSci AI