Multifunctional CoFe2O4@MXene-AgNWs/Cellulose Nanofiber Composite Films with Asymmetric Layered Architecture for High-Efficiency Electromagnetic Interference Shielding and Remarkable Thermal Management Capability

材料科学 电磁屏蔽 电磁干扰 电磁干扰 复合数 纳米纤维 导电体 图层(电子) 复合材料 纳米复合材料 光电子学 纳米技术 计算机科学 电信
作者
Zhengzheng Guo,Penggang Ren,Zhenxia Lu,Kaidi Hui,Junjun Yang,Zengping Zhang,Zhengyan Chen,Yanling Jin,Fang Ren
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:14 (36): 41468-41480 被引量:73
标识
DOI:10.1021/acsami.2c12555
摘要

Developing high-efficiency electromagnetic interference (EMI) shielding composite films with outstanding flexibility and excellent thermal management capability is vital but challenging for modern integrated electronic devices. Herein, a facile two-step vacuum filtration method was used to fabricate ultrathin, flexible, and multifunctional cellulose nanofiber (CNF)-based composite films with an asymmetric layered architecture. The asymmetric layered structure is composed of a low-conductivity CoFe2O4@MXene/CNF layer and a highly conductive silver nanowires (AgNWs)/CNF layer. Benefiting from the rational placement of the impedance matching layer and shielding layer, as well as the synergistic effect of electric and magnetic losses, the resultant composite film exhibits an extremely high EMI shielding effectiveness (SE) of 73.3 dB and an average EMI SE of 70.9 dB with low reflected efficiency of 4.9 dB at only 0.1 mm thickness. Sufficiently reliable EMI SE (over 95% reservation) is attained even after suffering from continuous physical deformations and long-term chemical attacks. Moreover, the prepared films exhibit extraordinary flexibility, strong mechanical properties, and satisfactory thermal management capability. This work offers a viable strategy for exploiting high performance EMI shielding films with attractive thermal management capacity, and the resultant films present extensive application potential in aerospace, artificial intelligence, advanced electronics, stealth technology, and the national defense industry, even under harsh environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
沉默沛岚完成签到,获得积分10
1秒前
丰知然应助宇文宛菡采纳,获得10
1秒前
所所应助tu采纳,获得30
2秒前
mechefy完成签到,获得积分10
2秒前
鲤鱼萧完成签到,获得积分10
3秒前
宗笑晴完成签到,获得积分10
3秒前
4秒前
小蘑菇应助头发乱了采纳,获得10
4秒前
代萌萌发布了新的文献求助10
5秒前
jucy发布了新的文献求助50
5秒前
5秒前
Lz完成签到,获得积分10
5秒前
Hello应助葛辉辉采纳,获得10
5秒前
秦嘉旎完成签到,获得积分10
6秒前
华仔应助通~采纳,获得10
6秒前
万能图书馆应助半颗橙子采纳,获得10
6秒前
樱铃完成签到,获得积分10
7秒前
7秒前
上官若男应助俭朴的明轩采纳,获得10
7秒前
1199发布了新的文献求助10
8秒前
英姑应助包容的过客采纳,获得10
9秒前
标致的战斗机完成签到,获得积分10
9秒前
科研人发布了新的文献求助10
10秒前
hl完成签到,获得积分10
10秒前
10秒前
10秒前
科研通AI5应助dingdong采纳,获得10
11秒前
Jasper应助幸福胡萝卜采纳,获得10
11秒前
爱看文献的小羽毛完成签到,获得积分10
11秒前
12秒前
song99发布了新的文献求助10
12秒前
12秒前
juan完成签到 ,获得积分10
12秒前
徐安琪完成签到,获得积分10
13秒前
小蘑菇应助深爱不疑采纳,获得200
13秒前
头发乱了完成签到,获得积分10
13秒前
13秒前
格兰兔米兔完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762