材料科学
电磁屏蔽
电磁干扰
电磁干扰
复合数
纳米纤维
导电体
图层(电子)
复合材料
纳米复合材料
光电子学
纳米技术
计算机科学
电信
作者
Zhengzheng Guo,Penggang Ren,Zhenxia Lu,Kaidi Hui,Junjun Yang,Zengping Zhang,Zhengyan Chen,Yanling Jin,Fang Ren
标识
DOI:10.1021/acsami.2c12555
摘要
Developing high-efficiency electromagnetic interference (EMI) shielding composite films with outstanding flexibility and excellent thermal management capability is vital but challenging for modern integrated electronic devices. Herein, a facile two-step vacuum filtration method was used to fabricate ultrathin, flexible, and multifunctional cellulose nanofiber (CNF)-based composite films with an asymmetric layered architecture. The asymmetric layered structure is composed of a low-conductivity CoFe2O4@MXene/CNF layer and a highly conductive silver nanowires (AgNWs)/CNF layer. Benefiting from the rational placement of the impedance matching layer and shielding layer, as well as the synergistic effect of electric and magnetic losses, the resultant composite film exhibits an extremely high EMI shielding effectiveness (SE) of 73.3 dB and an average EMI SE of 70.9 dB with low reflected efficiency of 4.9 dB at only 0.1 mm thickness. Sufficiently reliable EMI SE (over 95% reservation) is attained even after suffering from continuous physical deformations and long-term chemical attacks. Moreover, the prepared films exhibit extraordinary flexibility, strong mechanical properties, and satisfactory thermal management capability. This work offers a viable strategy for exploiting high performance EMI shielding films with attractive thermal management capacity, and the resultant films present extensive application potential in aerospace, artificial intelligence, advanced electronics, stealth technology, and the national defense industry, even under harsh environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI