Quadratic-Kalman-Filter-Based Sensor Fault Detection Approach for Unmanned Aerial Vehicles

卡尔曼滤波器 故障检测与隔离 控制理论(社会学) 惯性测量装置 噪音(视频) 计算机科学 扩展卡尔曼滤波器 断层(地质) 噪声测量 软传感器 降噪 工程类 人工智能 控制(管理) 执行机构 地震学 地质学 过程(计算) 图像(数学) 操作系统
作者
Xiaojia Han,Yiren Hu,Anhuan Xie,Xufei Yan,Xiaobo Wang,Chao Pei,Dan Zhang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:22 (19): 18669-18683 被引量:19
标识
DOI:10.1109/jsen.2022.3197234
摘要

Sensors are crucial for the control of unmanned aerial vehicles (UAVs). However, sensor faults will inevitably appear over time. Therefore, it is important to develop a sensor fault detection approach for the reliability of UAV. This article presents a novel model-based UAV fault detection approach based on quadratic Kalman filter (QKF). First, an accurate kinematic and dynamic model of UAVs is established, where the model is linearized and discretized for Kalman filter (KF). Second, the first KF is used for denoising, the secondKF is used to detrend, and residuals are calculated for detection. It is worth mentioning that the second KF is a modified Sage–Husa adaptive KF, which can automatically estimate the measurement noise variance. Compared with traditional approaches, this approach has the advantages of noise reduction, self-adaptation, divergence avoidance, and high detection rate. Simulation and experimental results show the effectiveness of the proposed approach, which can accurately detect the abrupt and incipient fault of an inertial measurement unit (IMU) sensor. At the same time, it can get the higher fault detection rates (FDRs) compared with conventional KF. Furthermore, this approach also provides the leading information and foundation for UAV fault-tolerant control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加减法完成签到 ,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
852应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
BMG发布了新的文献求助30
1秒前
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
rumengzhuo完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
唯一清完成签到,获得积分20
2秒前
2秒前
SYLH给linlin的求助进行了留言
3秒前
777777777完成签到,获得积分10
3秒前
wangling2333应助wasttt采纳,获得10
3秒前
清秀不言完成签到 ,获得积分10
3秒前
3秒前
李健应助Ted采纳,获得10
4秒前
领导范儿应助意而往南飞采纳,获得10
4秒前
赧赧发布了新的文献求助10
4秒前
cheryl发布了新的文献求助10
4秒前
4秒前
5秒前
唯一清发布了新的文献求助10
5秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951455
求助须知:如何正确求助?哪些是违规求助? 3496905
关于积分的说明 11085004
捐赠科研通 3227298
什么是DOI,文献DOI怎么找? 1784400
邀请新用户注册赠送积分活动 868422
科研通“疑难数据库(出版商)”最低求助积分说明 801122