Machine learning vs. conventional methods for prediction of 30-day readmission following percutaneous mitral edge-to-edge repair

医学 逻辑回归 队列 Lasso(编程语言) 回归 人工神经网络 机器学习 内科学 人工智能 心脏病学 统计 数学 计算机科学 万维网
作者
Samian Sulaiman,Akram Kawsara,Abdallah El Sabbagh,Abdulah Mahayni,Rajiv Gulati,Charanjit S. Rihal,Mohamad Alkhouli
出处
期刊:Cardiovascular Revascularization Medicine [Elsevier]
卷期号:56: 18-24 被引量:2
标识
DOI:10.1016/j.carrev.2023.05.013
摘要

Identifying predictors of readmissions after mitral valve transcatheter edge-to-edge repair (MV-TEER) is essential for risk stratification and optimization of clinical outcomes. We investigated the performance of machine learning [ML] algorithms vs. logistic regression in predicting readmissions after MV-TEER. We utilized the National-Readmission-Database to identify patients who underwent MV-TEER between 2015 and 2018. The database was randomly split into training (70 %) and testing (30 %) sets. Lasso regression was used to remove non-informative variables and rank informative ones. The top 50 informative predictors were tested using 4 ML models: ML-logistic regression [LR], Naive Bayes [NB], random forest [RF], and artificial neural network [ANN]/For comparison, we used a traditional statistical method (principal component analysis logistic regression PCA-LR). A total of 9425 index hospitalizations for MV-TEER were included. Overall, the 30-day readmission rate was 14.6 %, and heart failure was the most common cause of readmission (32 %). The readmission cohort had a higher burden of comorbidities (median Elixhauser score 5 vs. 3) and frailty score (3.7 vs. 2.9), longer hospital stays (3 vs. 2 days), and higher rates of non-home discharges (17.4 % vs. 8.5 %). The traditional PCA-LR model yielded a modest predictive value (area under the curve [AUC] 0.615 [0.587–0.644]). Two ML algorithms demonstrated superior performance than the traditional PCA-LR model; ML-LR (AUC 0.692 [0.667–0.717]), and NB (AUC 0.724 [0.700–0.748]). RF (AUC 0.62 [0.592–0.677]) and ANN (0.65 [0.623–0.677]) had modest performance. Machine learning algorithms may provide a useful tool for predicting readmissions after MV-TEER using administrative databases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
。.。发布了新的文献求助10
1秒前
2秒前
maclogos发布了新的文献求助10
2秒前
固的曼完成签到,获得积分10
2秒前
xinggui发布了新的文献求助10
5秒前
尽快毕业完成签到 ,获得积分10
5秒前
ASA完成签到,获得积分0
6秒前
6秒前
桶治世界发布了新的文献求助10
7秒前
song完成签到 ,获得积分10
7秒前
weiwei发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
彩色元彤发布了新的文献求助10
11秒前
CSUST科研一哥应助王珺采纳,获得10
11秒前
NPC-CBI发布了新的文献求助10
11秒前
kekeji完成签到 ,获得积分10
11秒前
12秒前
12秒前
卢敏明发布了新的文献求助10
12秒前
soong完成签到 ,获得积分10
12秒前
zzz完成签到 ,获得积分10
13秒前
完美的海秋发布了新的文献求助150
13秒前
tgd发布了新的文献求助10
13秒前
lulu发布了新的文献求助10
13秒前
wz发布了新的文献求助10
14秒前
14秒前
14秒前
刘六六发布了新的文献求助10
15秒前
16秒前
章鱼完成签到,获得积分10
17秒前
文献完成签到,获得积分10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
17秒前
iNk应助科研通管家采纳,获得20
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241452
求助须知:如何正确求助?哪些是违规求助? 2885936
关于积分的说明 8241051
捐赠科研通 2554412
什么是DOI,文献DOI怎么找? 1382564
科研通“疑难数据库(出版商)”最低求助积分说明 649598
邀请新用户注册赠送积分活动 625279