A recipe for an omnichannel warehouse storage system: Improving the storage efficiency by integrating block stacking and racking

全渠道 仓库 计算机科学 数据库 运筹学 块(置换群论) 运营管理 工程类 工业工程 可靠性工程 数学 业务 几何学 万维网 营销
作者
Thai Young Kim,Su‐Han Woo,Stein W. Wallace
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:182: 109320-109320
标识
DOI:10.1016/j.cie.2023.109320
摘要

Warehouses in multi-channel retailing are expected to possess storage capacity based on the purpose of operations. However, the inefficient use of storage capacity due to omnichannel retail restructuring, wherein mixed-storage items feature both online and offline, has prompted us to revisit the nature of existing storage systems (block stacking and racking). Most warehouses continue to improvise and undertake critical decision-making with regard to profiling balanced storage systems between block stacking and racking, including the efficient slotting of unit-load items across storage systems. This study aimed to establish a framework to systemically improve storage efficiency by achieving an optimum balance between block stacking and racking under inventory uncertainty – lot size and item dimensions. This study ingeniously proposes a two-stage stochastic programming model for robust optimisation during long-run profiling (redesign) and the multi-dimensional knapsack problem for achieving minimum space wastage during slotting (reshuffle). The study adopted a two-fold approach. First, the hypothetical directions for a balanced system, combining increases in buildings’ ceiling heights with its tendency to store low-volume, high-mix items, were examined. Second, the applicability of the two methods – redesign and reshuffle – was examined by considering a real-life case study and the life cycle of warehouse storage design. It was found that the reshuffling approach can resourcefully serve as a short-term solution for warehouses with imminent space issues. Redesigning also demonstrated a long-term space gain in floor space, thus minimising space wastage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
研友_Zlx3aZ发布了新的文献求助10
刚刚
1秒前
调皮秋凌完成签到,获得积分20
1秒前
1秒前
荣容完成签到 ,获得积分10
1秒前
2秒前
2秒前
Stone完成签到,获得积分10
2秒前
不吃橘子发布了新的文献求助30
2秒前
陈秋禹发布了新的文献求助10
3秒前
科研通AI6应助bnvgx采纳,获得10
3秒前
浮游应助派大星采纳,获得10
3秒前
3秒前
今后应助luchang123qq采纳,获得10
4秒前
4秒前
uniseen发布了新的文献求助10
5秒前
5秒前
汤飞柏发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
wzy发布了新的文献求助10
7秒前
7秒前
7秒前
静乖乖发布了新的文献求助10
7秒前
蜜桃奇迹发布了新的文献求助10
7秒前
轻薄的电脑应助蔬菜狗狗采纳,获得20
7秒前
虚心十三发布了新的文献求助10
8秒前
luchong发布了新的文献求助30
8秒前
9秒前
9秒前
9秒前
Rufina0720发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978