已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

WITHDRAWN: Machine Learning with Spatial Interpolation Techniques for Constructing 2-Dimensional Ozone Concentrations in Southern California during the COVID-19 Shutdown

克里金 多元插值 环境科学 插值(计算机图形学) 采样(信号处理) 臭氧 气象学 大气科学 地理 双线性插值 统计 地质学 数学 计算机科学 计算机视觉 计算机图形学(图像) 滤波器(信号处理) 动画
作者
Khanh Do,Arash Kashfi Yeganeh,Ziqi Gao,Cesunica E. Ivey
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:: 121881-121881 被引量:2
标识
DOI:10.1016/j.envpol.2023.121881
摘要

In this study, we combine machine learning and geospatial interpolations to create a two-dimensional high-resolution ozone concentration fields over the South Coast Air Basin for the entire year of 2020. Three spatial interpolation methods (bicubic, IDW, and ordinary kriging) were employed. The predicted ozone concentration fields were constructed using 15 building sites, and random forest regression was employed to test predictability of 2020 data based on input data from past years. Spatially interpolated ozone concentrations were evaluated at twelve sites that were independent of the actual spatial interpolations to find the most suitable method for SoCAB. Ordinary kriging interpolation had the best performance overall for 2020: concentrations were overestimated for Anaheim, Compton, LA North Main Street, LAX, Rubidoux, and San Gabriel sites and underestimated for Banning, Glendora, Lake Elsinore, and Mira Loma sites. The model performance improved from the West to the East, exhibiting better predictions for inland sites. The model is best at interpolating ozone concentrations inside the sampling region (bounded by the building sites), with R2 ranging from 0.56 to 0.85 for those sites, as prediction deficiencies occurred at the periphery of the sampling region, with the lowest R2 of 0.39 for Winchester. All the interpolation methods poorly predicted and underestimated ozone concentrations in Crestline during summer (up to 19 ppb). Poor performance for Crestline indicates that the site has a distribution air pollution levels independent from all other sites. Therefore, historical data from coastal and inland sites should not be used to predict ozone in Crestline using data-driven spatial interpolation approaches. The study demonstrates the utility of machine learning and geospatial techniques for evaluating air pollution levels during anomalous periods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
蒋美桥发布了新的文献求助10
1秒前
你当像鸟飞往你的山完成签到 ,获得积分10
2秒前
freezing发布了新的文献求助10
3秒前
可冥完成签到 ,获得积分10
3秒前
5秒前
6秒前
菜菜狙完成签到,获得积分10
6秒前
8秒前
8秒前
11秒前
12秒前
枕边人完成签到 ,获得积分10
12秒前
freezing完成签到,获得积分10
13秒前
14秒前
魁梧的万天完成签到,获得积分10
14秒前
宋胤欣完成签到,获得积分10
16秒前
16秒前
reck发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
浮游应助科研通管家采纳,获得10
19秒前
xzy998应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
xzy998应助科研通管家采纳,获得10
20秒前
Takahara2000应助科研通管家采纳,获得10
20秒前
Takahara2000应助科研通管家采纳,获得10
20秒前
Takahara2000应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
xzy998应助科研通管家采纳,获得10
21秒前
浮游应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
xzy998应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899127
求助须知:如何正确求助?哪些是违规求助? 4179490
关于积分的说明 12975214
捐赠科研通 3943544
什么是DOI,文献DOI怎么找? 2163400
邀请新用户注册赠送积分活动 1181711
关于科研通互助平台的介绍 1087387