Determinants of safety outcomes in organizations: Exploring O*NET data to predict occupational accident rates

差异(会计) 心理学 背景(考古学) 职业安全与健康 应用心理学 梯度升压 随机森林 计算机科学 机器学习 医学 业务 古生物学 会计 病理 生物
作者
Lavanya S. Kumar,Gary N. Burns
出处
期刊:Personnel Psychology [Wiley]
卷期号:77 (2): 555-594 被引量:3
标识
DOI:10.1111/peps.12560
摘要

Abstract Although workplace safety research is common given the frequent occurrence of fatal and nonfatal occupational accidents, it has focused mainly on safety climate and lacks a unified approach when examining predictors of safety outcomes. We argue that adopting an integrated approach with job analysis data and using newer machine learning methods can support and extend findings from cross‐sectional research studies using traditional statistical methods. The suggested approach is demonstrated by using three machine learning methods (elastic net, random forest, and gradient boosting) along with publicly available O*NET data to predict annual nonfatal occupational incident rates published by the US Bureau of Labor Statistics. Findings indicate that O*NET descriptors from several subdomains including abilities, work context, and work activities were significant in predicting occupational injury rates. The amount of variance explained by the predictors varied from 54.2% (gradient boosting) to 58.8% (elastic net) with 12 common predictors across the three methods. The exploratory approach with machine learning techniques supports past findings and helps uncover understudied predictors of safety outcomes. This study adds to the literature surrounding person‐ and situation‐based antecedents to workplace safety and has several other implications for research and practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
搜集达人应助淡淡采白采纳,获得10
2秒前
高高代珊完成签到 ,获得积分10
3秒前
gmc发布了新的文献求助10
4秒前
4秒前
5秒前
善学以致用应助Mian采纳,获得10
5秒前
学科共进发布了新的文献求助60
6秒前
LWJ完成签到 ,获得积分10
6秒前
6秒前
缓慢的糖豆完成签到,获得积分10
7秒前
阉太狼完成签到,获得积分10
7秒前
8秒前
soory完成签到,获得积分10
9秒前
任性的傲柏完成签到,获得积分10
9秒前
lwk205完成签到,获得积分0
9秒前
10秒前
一一完成签到,获得积分10
10秒前
10秒前
10秒前
高中生完成签到,获得积分10
11秒前
11秒前
11秒前
希望天下0贩的0应助TT采纳,获得10
12秒前
xxegt完成签到 ,获得积分10
12秒前
13秒前
爱吃泡芙发布了新的文献求助10
13秒前
susu完成签到,获得积分10
15秒前
会神发布了新的文献求助10
15秒前
KK完成签到,获得积分10
16秒前
充电宝应助justin采纳,获得10
18秒前
19秒前
Ch完成签到 ,获得积分10
20秒前
22秒前
ajun完成签到,获得积分10
22秒前
22秒前
春江完成签到,获得积分10
22秒前
22秒前
漂亮的松思完成签到,获得积分20
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808