NLCS - A novel coordinate system for spatial analysis on hyperspectral leaf images and an improved nitrogen index for soybean plants

高光谱成像 像素 叶面积指数 氮气 归一化差异植被指数 空间分布 精准农业 遥感 农学 数学 环境科学 人工智能 生物系统 计算机科学 生物 化学 地理 生态学 农业 有机化学
作者
Zhihang Song,Xing Wei,Jian Jin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:204: 107550-107550 被引量:3
标识
DOI:10.1016/j.compag.2022.107550
摘要

Hyperspectral imaging (HSI) has been increasingly applied in plant phenotyping projects. However, most HSI systems’ imaging quality is compromised by various noise factors such as the changing ambient light, leaf slopes, and so on. In recent years, new HSI devices such as LeafSpec have been introduced to provide a higher signal-over-noise ratio along with higher spectral and spatial resolutions. However, most of the previous image processing software only calculated the averaged spectrum over the whole leaf, but rarely include the spatial distribution analysis on the leaf level. Meanwhile, different nutrient stresses could result in different spatial distribution patterns on the leaf which can be used to elevate the quality of plant phenotyping. This study focused on the development of a new methodology for spatial distribution analysis of the leaf-level HSI images. Firstly, a novel way of encoding the soybean leaf pixels to a new coordinate system called the Natural Leaf Coordinate System (NLCS) was introduced. NLCS defined the coordinates of every leaf pixel relative to the venation structure of the leaf so that the spatial distribution analysis could be conducted more intuitively. Second, a new nitrogen index based on NLCS called NLCS-N was developed and able to outperform the whole leaf averaged NDVI in terms of predicting the nitrogen content of the soybean plants and distinguishing the nitrogen-sufficient plants from the nitrogen-deficient ones more significantly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助dcdsdc采纳,获得10
刚刚
夏青荷发布了新的文献求助10
刚刚
刚刚
2秒前
lotu_fr完成签到,获得积分10
2秒前
人生如梦应助曾会锋采纳,获得10
3秒前
3秒前
云ch发布了新的文献求助10
4秒前
4秒前
我才是孙悟空完成签到,获得积分10
5秒前
木日发布了新的文献求助10
5秒前
淡定的忆山完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
老张头秃了完成签到,获得积分10
8秒前
收声发布了新的文献求助10
9秒前
YUQIONG发布了新的文献求助10
9秒前
点点发布了新的文献求助10
10秒前
chaoli完成签到,获得积分10
12秒前
Owen应助zhouyan采纳,获得10
12秒前
赘婿应助Mody采纳,获得10
13秒前
兴奋的发卡完成签到 ,获得积分10
14秒前
月神满月完成签到,获得积分10
16秒前
dong应助hope采纳,获得10
17秒前
芋泥完成签到,获得积分10
18秒前
琪宝非宝发布了新的文献求助10
19秒前
19秒前
SciGPT应助我才是孙悟空采纳,获得10
19秒前
Owllight发布了新的文献求助10
20秒前
小二郎应助生椰拿铁采纳,获得10
22秒前
tdd完成签到,获得积分10
22秒前
23秒前
JHL发布了新的文献求助10
23秒前
23秒前
我是老大应助陈陈陈采纳,获得10
24秒前
杏子发布了新的文献求助10
25秒前
sjx发布了新的文献求助10
25秒前
吕韦霖完成签到,获得积分10
25秒前
材料若饥发布了新的文献求助200
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507317
关于积分的说明 11135554
捐赠科研通 3239809
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872380
科研通“疑难数据库(出版商)”最低求助积分说明 803150