Fractal-based microstructure reconstruction to predict the permeability of cement pastes

分形维数 胶凝的 材料科学 分形 磁导率 微观结构 水泥 硅酸盐水泥 分形分析 复合材料 毛细管作用 矿物学 地质学 数学 化学 数学分析 生物化学
作者
Jiyoung Kim,Seongcheol Choi
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:366: 130157-130157 被引量:4
标识
DOI:10.1016/j.conbuildmat.2022.130157
摘要

The permeability of cementitious materials is one of the crucial indicators in the quantitative evaluation of durability, and it is significantly affected by the characteristics of the internal pore structure of such materials. To predict the permeability of cementitious materials based on a clear analysis of their pore structure, we propose an improved methodology for virtually reconstructing the three-dimensional pore structures of ordinary Portland cement (OPC) pastes by using fractal theory. In addition, we propose a methodology to predict permeability on the basis of the reconstructed pore structure. The accuracy of pore structure reconstruction was found to be the highest when each pore region was reconstructed using five types of base fractal units (BFUs) based on the fractal dimensions of pore-size distribution and pore tortuousness. The permeability predictions generated using the proposed methodology indicated that when the volumetric parameter of the pore structure was the same, the permeability increased by up to four orders of magnitude as the geometric parameters varied. In addition, the fractal dimension of pore-size distribution had a more critical effect on the large capillary pores region, and the fractal dimension of pore tortuousness had a more critical effect on the gel & small capillary pores region. These results indicate that consideration of the geometric characteristics of the pore structure significantly influences the pore structure reconstruction and permeability prediction processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
姚运龙发布了新的文献求助30
刚刚
BWZ发布了新的文献求助10
1秒前
123完成签到,获得积分10
1秒前
逸云完成签到,获得积分10
1秒前
小鼠拯救者完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
FFFFFFF应助啊娴仔采纳,获得10
3秒前
Liu发布了新的文献求助10
3秒前
3秒前
3秒前
大美女完成签到,获得积分10
4秒前
4秒前
科研三井泽完成签到,获得积分10
4秒前
4秒前
lyn发布了新的文献求助10
5秒前
沙拉完成签到,获得积分10
5秒前
5秒前
SV完成签到,获得积分10
5秒前
HYG发布了新的文献求助10
5秒前
6秒前
小蘑菇应助lkc采纳,获得10
6秒前
6秒前
清秀元柏发布了新的文献求助10
7秒前
Aria应助儒雅的秋珊采纳,获得10
8秒前
贤惠的豪英完成签到,获得积分10
8秒前
tsm完成签到,获得积分10
9秒前
Raymond应助Ll采纳,获得10
9秒前
爱笑的野狼完成签到,获得积分10
10秒前
穴居人完成签到,获得积分10
10秒前
充电宝应助福娃采纳,获得10
10秒前
10秒前
小黄应助学术蠕虫采纳,获得10
11秒前
11秒前
Orange应助自觉的小蝴蝶采纳,获得10
12秒前
12秒前
哲999发布了新的文献求助10
12秒前
xiaohu完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762