材料科学
纳米复合材料
甲醛
异质结
光催化
傅里叶变换红外光谱
光谱学
化学工程
吸附
分析化学(期刊)
纳米技术
光电子学
催化作用
有机化学
物理
工程类
化学
量子力学
作者
Su Zhang,Shupeng Sun,Baoyu Huang,Nan Wang,Xiaogan Li
标识
DOI:10.1021/acsami.2c19722
摘要
Hollow In2O3@TiO2 double-layer nanospheres were prepared via a facile water bath method using the sacrifice template of carbon nanospheres. It is shown that the size of the In2O3/TiO2 nanocomposites is 150-250 nm, the thickness of the In2O3 shell is about 10 nm, and the thickness of the TiO2 shell is about 15 nm. The sensing performances of the synthesized In2O3/TiO2 nanocomposites-based chemiresistive-type sensor to formaldehyde (HCHO) gas under UV light activation at room temperature have been studied. Compared to the pure In2O3- and pure TiO2-based sensors, the In2O3/TiO2 nanocomposite sensor exhibits much better sensing performances to formaldehyde. The response of the In2O3/TiO2 nanocomposite-based sensor to 1 ppm formaldehyde is about 3.8, and the response time and recovery time are 28 and 50 s, respectively. The detectable formaldehyde concentration can reach as low as 0.06 ppm. The role of the formed In2O3/TiO2 heterojunctions and the involved chemical reactions activated by UV light have been investigated by AC impedance spectroscopy and the in situ diffuse reflectance Fourier transform infrared spectroscopy. The improvement of the sensing properties of In2O3/TiO2 nanocomposites could be attributed to the nanoheterojunctions between the two components and the "combined photocatalytic effects" of UV-light-emitting diode irradiation. Density functional theory calculations demonstrated that introducing heterojunctions could improve the adsorption energy and charge transfer between formaldehyde and sensing materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI